Phenotypic and genetic correlations of pork myoglobin content with meat colour and other traits in an eight breed-crossed heterogeneous population
Meat colour is one of the most important meat quality traits affecting consumption desire. Genetic improvement for meat colour traits is not so easy because pigs can be phenotyped only after slaughter. Besides the parameters from the optical instrument, other indexes that reflect the material basis...
Guardado en:
Autores principales: | , , , , , , , |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
Elsevier
2021
|
Materias: | |
Acceso en línea: | https://doaj.org/article/60ba48d3cec240bcb2b021ab168d7a5e |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
Sumario: | Meat colour is one of the most important meat quality traits affecting consumption desire. Genetic improvement for meat colour traits is not so easy because pigs can be phenotyped only after slaughter. Besides the parameters from the optical instrument, other indexes that reflect the material basis of meat colour should be measured accurately and used in the genomic analysis. Myoglobin (Mb) is the main chemical component determining meat colour. However, to what extent the Mb content contributes to meat colour, and whether it can be used as a trait for pig breeding to improve meat colour, and the correlations of Mb content with complex porcine traits are largely unknown. To address these questions, we measured the muscle Mb content in 624 pigs from the 7th generation of a specially designed eight breed-crossed pig heterogeneous population, evaluated its phenotypic and genetic correlations with longissimus thoracis colour score at 24 h after slaughter. More than that, we also systematically phenotyped more than 100 traits on these animals to evaluate the potential correlations between muscle Mb content and economically important traits. Our results showed that the average muscle Mb content in the 624 pigs was 1.00 mg/g, ranging from 0.51 to 2.17 mg/g. We found that higher Mb content usually correlated with favourable meat colour, higher marbling score, less moisture content, and less drip loss. Genetic correlation analysis between muscle Mb content and 101 traits measured in this study shows that Mb content is also significantly correlated with 31 traits, including marbling, shear force, firmness, and juiciness. To our knowledge, this is one of the largest studies about the correlations of muscle Mb content with as many as 100 various traits in a large-scale genetically diversified population. Our results showed that the Mb content could be a selection parameter for the genetic improvement of meat colour. The selection for higher Mb content will also benefit marbling, shear force, firmness, and overall liking but might not affect the growth, carcass, and fat deposition traits. |
---|