A novel true random number generator based on a stochastic diffusive memristor
Memristors can switch between high and low electrical-resistance states, but the switching behaviour can be unpredictable. Here, the authors harness this unpredictability to develop a memristor-based true random number generator that uses the stochastic delay time of threshold switching
Guardado en:
Autores principales: | Hao Jiang, Daniel Belkin, Sergey E. Savel’ev, Siyan Lin, Zhongrui Wang, Yunning Li, Saumil Joshi, Rivu Midya, Can Li, Mingyi Rao, Mark Barnell, Qing Wu, J. Joshua Yang, Qiangfei Xia |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
Nature Portfolio
2017
|
Materias: | |
Acceso en línea: | https://doaj.org/article/60bc66f1c81849a0b3d569fe6fed6467 |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
Ejemplares similares
-
Efficient and self-adaptive in-situ learning in multilayer memristor neural networks
por: Can Li, et al.
Publicado: (2018) -
An artificial nociceptor based on a diffusive memristor
por: Jung Ho Yoon, et al.
Publicado: (2018) -
An artificial spiking afferent nerve based on Mott memristors for neurorobotics
por: Xumeng Zhang, et al.
Publicado: (2020) -
Self-clocking fast and variation tolerant true random number generator based on a stochastic mott memristor
por: Gwangmin Kim, et al.
Publicado: (2021) -
Quantized conductance coincides with state instability and excess noise in tantalum oxide memristors
por: Wei Yi, et al.
Publicado: (2016)