Machine learning and feature engineering for predicting pulse presence during chest compressions
Current resuscitation protocols require pausing chest compressions during cardiopulmonary resuscitation (CPR) to check for a pulse. However, pausing CPR when a patient is pulseless can worsen patient outcomes. Our objective was to design and evaluate an ECG-based algorithm that predicts pulse presen...
Guardado en:
Autores principales: | Diya Sashidhar, Heemun Kwok, Jason Coult, Jennifer Blackwood, Peter J. Kudenchuk, Shiv Bhandari, Thomas D. Rea, J. Nathan Kutz |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
The Royal Society
2021
|
Materias: | |
Acceso en línea: | https://doaj.org/article/60d420c517094551a0cee642b8ab944b |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
Ejemplares similares
-
Incidence, Mechanism, and Outcomes of On‐Plane Versus Off‐Plane Cardiac Arrest in Air Travelers
por: Neal A. Chatterjee, et al.
Publicado: (2021) -
Influence of Personal Protective Equipment on the Quality of Chest Compressions: A Meta-Analysis of Randomized Controlled Trials
por: Ying Cui, et al.
Publicado: (2021) -
La reanimación cardiorrespiratoria y la orden de no reanimar
Publicado: (2007) -
Comparison of Resuscitation Outcomes Between 2‐ or 3‐Stacked Defibrillation Strategies With Minimally Interrupted Chest Compression and the Single Defibrillation Strategy: A Swine Cardiac Arrest Model
por: Soyeong Kim, et al.
Publicado: (2021) - Resuscitation