Predicting the inhibition efficiencies of magnesium dissolution modulators using sparse machine learning models

Abstract The degradation behaviour of magnesium and its alloys can be tuned by small organic molecules. However, an automatic identification of effective organic additives within the vast chemical space of potential compounds needs sophisticated tools. Herein, we propose two systematic approaches of...

Descripción completa

Guardado en:
Detalles Bibliográficos
Autores principales: Elisabeth J. Schiessler, Tim Würger, Sviatlana V. Lamaka, Robert H. Meißner, Christian J. Cyron, Mikhail L. Zheludkevich, Christian Feiler, Roland C. Aydin
Formato: article
Lenguaje:EN
Publicado: Nature Portfolio 2021
Materias:
Acceso en línea:https://doaj.org/article/60d8828f3c82490391add887e60612fd
Etiquetas: Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
id oai:doaj.org-article:60d8828f3c82490391add887e60612fd
record_format dspace
spelling oai:doaj.org-article:60d8828f3c82490391add887e60612fd2021-12-05T12:10:18ZPredicting the inhibition efficiencies of magnesium dissolution modulators using sparse machine learning models10.1038/s41524-021-00658-72057-3960https://doaj.org/article/60d8828f3c82490391add887e60612fd2021-12-01T00:00:00Zhttps://doi.org/10.1038/s41524-021-00658-7https://doaj.org/toc/2057-3960Abstract The degradation behaviour of magnesium and its alloys can be tuned by small organic molecules. However, an automatic identification of effective organic additives within the vast chemical space of potential compounds needs sophisticated tools. Herein, we propose two systematic approaches of sparse feature selection for identifying molecular descriptors that are most relevant for the corrosion inhibition efficiency of chemical compounds. One is based on the classical statistical tool of analysis of variance, the other one based on random forests. We demonstrate how both can—when combined with deep neural networks—help to predict the corrosion inhibition efficiencies of chemical compounds for the magnesium alloy ZE41. In particular, we demonstrate that this framework outperforms predictions relying on a random selection of molecular descriptors. Finally, we point out how autoencoders could be used in the future to enable even more accurate automated predictions of corrosion inhibition efficiencies.Elisabeth J. SchiesslerTim WürgerSviatlana V. LamakaRobert H. MeißnerChristian J. CyronMikhail L. ZheludkevichChristian FeilerRoland C. AydinNature PortfolioarticleMaterials of engineering and construction. Mechanics of materialsTA401-492Computer softwareQA76.75-76.765ENnpj Computational Materials, Vol 7, Iss 1, Pp 1-9 (2021)
institution DOAJ
collection DOAJ
language EN
topic Materials of engineering and construction. Mechanics of materials
TA401-492
Computer software
QA76.75-76.765
spellingShingle Materials of engineering and construction. Mechanics of materials
TA401-492
Computer software
QA76.75-76.765
Elisabeth J. Schiessler
Tim Würger
Sviatlana V. Lamaka
Robert H. Meißner
Christian J. Cyron
Mikhail L. Zheludkevich
Christian Feiler
Roland C. Aydin
Predicting the inhibition efficiencies of magnesium dissolution modulators using sparse machine learning models
description Abstract The degradation behaviour of magnesium and its alloys can be tuned by small organic molecules. However, an automatic identification of effective organic additives within the vast chemical space of potential compounds needs sophisticated tools. Herein, we propose two systematic approaches of sparse feature selection for identifying molecular descriptors that are most relevant for the corrosion inhibition efficiency of chemical compounds. One is based on the classical statistical tool of analysis of variance, the other one based on random forests. We demonstrate how both can—when combined with deep neural networks—help to predict the corrosion inhibition efficiencies of chemical compounds for the magnesium alloy ZE41. In particular, we demonstrate that this framework outperforms predictions relying on a random selection of molecular descriptors. Finally, we point out how autoencoders could be used in the future to enable even more accurate automated predictions of corrosion inhibition efficiencies.
format article
author Elisabeth J. Schiessler
Tim Würger
Sviatlana V. Lamaka
Robert H. Meißner
Christian J. Cyron
Mikhail L. Zheludkevich
Christian Feiler
Roland C. Aydin
author_facet Elisabeth J. Schiessler
Tim Würger
Sviatlana V. Lamaka
Robert H. Meißner
Christian J. Cyron
Mikhail L. Zheludkevich
Christian Feiler
Roland C. Aydin
author_sort Elisabeth J. Schiessler
title Predicting the inhibition efficiencies of magnesium dissolution modulators using sparse machine learning models
title_short Predicting the inhibition efficiencies of magnesium dissolution modulators using sparse machine learning models
title_full Predicting the inhibition efficiencies of magnesium dissolution modulators using sparse machine learning models
title_fullStr Predicting the inhibition efficiencies of magnesium dissolution modulators using sparse machine learning models
title_full_unstemmed Predicting the inhibition efficiencies of magnesium dissolution modulators using sparse machine learning models
title_sort predicting the inhibition efficiencies of magnesium dissolution modulators using sparse machine learning models
publisher Nature Portfolio
publishDate 2021
url https://doaj.org/article/60d8828f3c82490391add887e60612fd
work_keys_str_mv AT elisabethjschiessler predictingtheinhibitionefficienciesofmagnesiumdissolutionmodulatorsusingsparsemachinelearningmodels
AT timwurger predictingtheinhibitionefficienciesofmagnesiumdissolutionmodulatorsusingsparsemachinelearningmodels
AT sviatlanavlamaka predictingtheinhibitionefficienciesofmagnesiumdissolutionmodulatorsusingsparsemachinelearningmodels
AT roberthmeißner predictingtheinhibitionefficienciesofmagnesiumdissolutionmodulatorsusingsparsemachinelearningmodels
AT christianjcyron predictingtheinhibitionefficienciesofmagnesiumdissolutionmodulatorsusingsparsemachinelearningmodels
AT mikhaillzheludkevich predictingtheinhibitionefficienciesofmagnesiumdissolutionmodulatorsusingsparsemachinelearningmodels
AT christianfeiler predictingtheinhibitionefficienciesofmagnesiumdissolutionmodulatorsusingsparsemachinelearningmodels
AT rolandcaydin predictingtheinhibitionefficienciesofmagnesiumdissolutionmodulatorsusingsparsemachinelearningmodels
_version_ 1718372194540584960