Predicting the inhibition efficiencies of magnesium dissolution modulators using sparse machine learning models
Abstract The degradation behaviour of magnesium and its alloys can be tuned by small organic molecules. However, an automatic identification of effective organic additives within the vast chemical space of potential compounds needs sophisticated tools. Herein, we propose two systematic approaches of...
Guardado en:
Autores principales: | Elisabeth J. Schiessler, Tim Würger, Sviatlana V. Lamaka, Robert H. Meißner, Christian J. Cyron, Mikhail L. Zheludkevich, Christian Feiler, Roland C. Aydin |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
Nature Portfolio
2021
|
Materias: | |
Acceso en línea: | https://doaj.org/article/60d8828f3c82490391add887e60612fd |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
Ejemplares similares
-
Construction of ground-state preserving sparse lattice models for predictive materials simulations
por: Wenxuan Huang, et al.
Publicado: (2017) -
Analog Circuit Soft Fault Diagnosis Based on Sparse Random Projections and K-Nearest Neighbor
por: Jian Sun, et al.
Publicado: (2021) -
Electron correlation effects on exchange interactions and spin excitations in 2D van der Waals materials
por: Liqin Ke, et al.
Publicado: (2021) -
Minimal-active-space multistate density functional theory for excitation energy involving local and charge transfer states
por: Ruoqi Zhao, et al.
Publicado: (2021) -
The Model of Makerspace Development Element and Performance Analysis Based on NVivo Classification
por: Yingyan Wang, et al.
Publicado: (2021)