Type II transmembrane serine protease gene variants associate with breast cancer.

Type II transmembrane serine proteases (TTSPs) are related to tumor growth, invasion, and metastasis in cancer. Genetic variants in these genes may alter their function, leading to cancer onset and progression, and affect patient outcome. Here, 464 breast cancer cases and 370 controls were genotyped...

Descripción completa

Guardado en:
Detalles Bibliográficos
Autores principales: Kaisa Luostari, Jaana M Hartikainen, Maria Tengström, Jorma J Palvimo, Vesa Kataja, Arto Mannermaa, Veli-Matti Kosma
Formato: article
Lenguaje:EN
Publicado: Public Library of Science (PLoS) 2014
Materias:
R
Q
Acceso en línea:https://doaj.org/article/60d8d1f823cd4bec995d3ad95a823deb
Etiquetas: Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
Descripción
Sumario:Type II transmembrane serine proteases (TTSPs) are related to tumor growth, invasion, and metastasis in cancer. Genetic variants in these genes may alter their function, leading to cancer onset and progression, and affect patient outcome. Here, 464 breast cancer cases and 370 controls were genotyped for 82 single-nucleotide polymorphisms covering eight genes. Association of the genotypes was estimated against breast cancer risk, breast cancer-specific survival, and survival in different treatment groups, and clinicopathological variables. SNPs in TMPRSS3 (rs3814903 and rs11203200), TMPRSS7 (rs1844925), and HGF (rs5745752) associated significantly with breast cancer risk (Ptrend = 0.008-0.042). SNPs in TMPRSS1 (rs12151195 and rs12461158), TMPRSS2 (rs2276205), TMPRSS3 (rs3814903), and TMPRSS7 (rs2399403) associated with prognosis (P = 0.004-0.046). When estimating the combined effect of the variants, the risk of breast cancer was higher with 4-5 alleles present compared to 0-2 alleles (P = 0.0001; OR, 2.34; 95% CI, 1.39-3.94). Women with 6-8 survival-associating alleles had a 3.3 times higher risk of dying of breast cancer compared to women with 1-3 alleles (P = 0.001; HR, 3.30; 95% CI, 1.58-6.88). The results demonstrate the combined effect of variants in TTSPs and their related genes in breast cancer risk and patient outcome. Functional analysis of these variants will lead to further understanding of this gene family, which may improve individualized risk estimation and development of new strategies for treatment of breast cancer.