Enabling precision rehabilitation interventions using wearable sensors and machine learning to track motor recovery
Abstract The need to develop patient-specific interventions is apparent when one considers that clinical studies often report satisfactory motor gains only in a portion of participants. This observation provides the foundation for “precision rehabilitation”. Tracking and predicting outcomes defining...
Guardado en:
Autores principales: | Catherine Adans-Dester, Nicolas Hankov, Anne O’Brien, Gloria Vergara-Diaz, Randie Black-Schaffer, Ross Zafonte, Jennifer Dy, Sunghoon I. Lee, Paolo Bonato |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
Nature Portfolio
2020
|
Materias: | |
Acceso en línea: | https://doaj.org/article/60e218763d274b808b3008102b700226 |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
Ejemplares similares
-
mHealth and wearable technology should replace motor diaries to track motor fluctuations in Parkinson’s disease
por: M. Kelley Erb, et al.
Publicado: (2020) -
Precision wearable accelerometer contact microphones for longitudinal monitoring of mechano-acoustic cardiopulmonary signals
por: Pranav Gupta, et al.
Publicado: (2020) -
A deep transfer learning approach for wearable sleep stage classification with photoplethysmography
por: Mustafa Radha, et al.
Publicado: (2021) -
Investigating sources of inaccuracy in wearable optical heart rate sensors
por: Brinnae Bent, et al.
Publicado: (2020) -
The emerging clinical role of wearables: factors for successful implementation in healthcare
por: Matthew Smuck, et al.
Publicado: (2021)