Machine learning based prediction of lattice thermal conductivity for half-Heusler compounds using atomic information
Abstract Half-Heusler compound has drawn attention in a variety of fields as a candidate material for thermoelectric energy conversion and spintronics technology. When the half-Heusler compound is incorporated into the device, the control of high lattice thermal conductivity owing to high crystal sy...
Guardado en:
Autores principales: | Hidetoshi Miyazaki, Tomoyuki Tamura, Masashi Mikami, Kosuke Watanabe, Naoki Ide, Osman Murat Ozkendir, Yoichi Nishino |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
Nature Portfolio
2021
|
Materias: | |
Acceso en línea: | https://doaj.org/article/60e5cd41c9824d02be48e9272e3151ac |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
Ejemplares similares
-
A Systematic Approach for Semiconductor Half-Heusler
por: Wei Yang Samuel Lim, et al.
Publicado: (2021) -
Dimensional engineering of a topological insulating phase in Half-Heusler LiMgAs
por: Raghottam M. Sattigeri, et al.
Publicado: (2021) -
Discovery of TaFeSb-based half-Heuslers with high thermoelectric performance
por: Hangtian Zhu, et al.
Publicado: (2019) -
Large magneto-Seebeck effect in magnetic tunnel junctions with half-metallic Heusler electrodes
por: Alexander Boehnke, et al.
Publicado: (2017) -
Discovery of ZrCoBi based half Heuslers with high thermoelectric conversion efficiency
por: Hangtian Zhu, et al.
Publicado: (2018)