Differentiable molecular simulation can learn all the parameters in a coarse-grained force field for proteins.
Finding optimal parameters for force fields used in molecular simulation is a challenging and time-consuming task, partly due to the difficulty of tuning multiple parameters at once. Automatic differentiation presents a general solution: run a simulation, obtain gradients of a loss function with res...
Guardado en:
Autores principales: | Joe G Greener, David T Jones |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
Public Library of Science (PLoS)
2021
|
Materias: | |
Acceso en línea: | https://doaj.org/article/60f87f3edae44e5b94a9680cd43991c8 |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
Ejemplares similares
-
Polarizable water model for the coarse-grained MARTINI force field.
por: Semen O Yesylevskyy, et al.
Publicado: (2010) -
Machine learning coarse grained models for water
por: Henry Chan, et al.
Publicado: (2019) -
Estimating Factors Determining Emulsification Capability of Surfactant-Like Peptide with Coarse-Grained Molecular Dynamics Simulation
por: Tegar Wijaya, et al.
Publicado: (2019) -
FiCoS: A fine-grained and coarse-grained GPU-powered deterministic simulator for biochemical networks.
por: Andrea Tangherloni, et al.
Publicado: (2021) -
Large-scale simulation of biomembranes incorporating realistic kinetics into coarse-grained models
por: Mohsen Sadeghi, et al.
Publicado: (2020)