Differentiable molecular simulation can learn all the parameters in a coarse-grained force field for proteins.
Finding optimal parameters for force fields used in molecular simulation is a challenging and time-consuming task, partly due to the difficulty of tuning multiple parameters at once. Automatic differentiation presents a general solution: run a simulation, obtain gradients of a loss function with res...
Enregistré dans:
Auteurs principaux: | Joe G Greener, David T Jones |
---|---|
Format: | article |
Langue: | EN |
Publié: |
Public Library of Science (PLoS)
2021
|
Sujets: | |
Accès en ligne: | https://doaj.org/article/60f87f3edae44e5b94a9680cd43991c8 |
Tags: |
Ajouter un tag
Pas de tags, Soyez le premier à ajouter un tag!
|
Documents similaires
-
Polarizable water model for the coarse-grained MARTINI force field.
par: Semen O Yesylevskyy, et autres
Publié: (2010) -
Machine learning coarse grained models for water
par: Henry Chan, et autres
Publié: (2019) -
Estimating Factors Determining Emulsification Capability of Surfactant-Like Peptide with Coarse-Grained Molecular Dynamics Simulation
par: Tegar Wijaya, et autres
Publié: (2019) -
FiCoS: A fine-grained and coarse-grained GPU-powered deterministic simulator for biochemical networks.
par: Andrea Tangherloni, et autres
Publié: (2021) -
Large-scale simulation of biomembranes incorporating realistic kinetics into coarse-grained models
par: Mohsen Sadeghi, et autres
Publié: (2020)