Network Intrusion Detection Model Based on Improved BYOL Self-Supervised Learning
The combination of deep learning and intrusion detection has become a hot topic in today’s network security. In the face of massive, high-dimensional network traffic with uneven sample distribution, how to be able to accurately detect anomalous traffic is the primary task of intrusion detection. Mos...
Guardado en:
Autores principales: | Zhendong Wang, Zeyu Li, Junling Wang, Dahai Li |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
Hindawi-Wiley
2021
|
Materias: | |
Acceso en línea: | https://doaj.org/article/610f37725d81425fa9970e803e066cec |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
Ejemplares similares
-
Improving the Accuracy of Network Intrusion Detection with Causal Machine Learning
por: Zengri Zeng, et al.
Publicado: (2021) -
A Survey of Few-Shot Learning: An Effective Method for Intrusion Detection
por: Ruixue Duan, et al.
Publicado: (2021) -
Intrusion Detection Algorithm and Simulation of Wireless Sensor Network under Internet Environment
por: Jing Jin
Publicado: (2021) -
SCR-CC: A Novel Sensing Clustering Routing Algorithm Based on Collaborative Computing in Heterogeneous Sensor Networks
por: Zeyu Sun, et al.
Publicado: (2021) -
A Classification Method of Network Ideological and Political Resources Using Improved SVM Algorithm
por: WenXia Wang
Publicado: (2021)