A Novel Approach to Generate a Virtual Population of Human Coronary Arteries for <italic>In Silico</italic> Clinical Trials of Stent Design

<italic>Goal:</italic> To develop a cardiovascular virtual population using statistical modeling and computational biomechanics. <italic>Methods:</italic> A clinical data augmentation algorithm is implemented to efficiently generate virtual clinical data using a real clinical...

Descripción completa

Guardado en:
Detalles Bibliográficos
Autores principales: Dimitrios Pleouras, Antonis Sakellarios, George Rigas, Georgia S. Karanasiou, Panagiota Tsompou, Gianna Karanasiou, Vassiliki Kigka, Savvas Kyriakidis, Vasileios Pezoulas, George Gois, Nikolaos Tachos, Aidonis Ramos, Gualtiero Pelosi, Silvia Rocchiccioli, Lampros Michalis, Dimitrios I. Fotiadis
Formato: article
Lenguaje:EN
Publicado: IEEE 2021
Materias:
Acceso en línea:https://doaj.org/article/6116fa3d0737417f92cf33d1876f410f
Etiquetas: Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
Descripción
Sumario:<italic>Goal:</italic> To develop a cardiovascular virtual population using statistical modeling and computational biomechanics. <italic>Methods:</italic> A clinical data augmentation algorithm is implemented to efficiently generate virtual clinical data using a real clinical dataset. An atherosclerotic plaque growth model is employed to 3D reconstructed coronary arterial segments to generate virtual coronary arterial geometries (geometrical data). Last, the combination of the virtual clinical and geometrical data is achieved using a methodology that allows for the generation of a realistic virtual population which can be used in <italic>in silico</italic> clinical trials. <italic>Results:</italic> The results show good agreement between real and virtual clinical data presenting a mean gof 0.1 &#x00B1; 0.08. 400 virtual coronary arteries were generated, while the final virtual population includes 10,000 patients. <italic>Conclusions:</italic> The virtual arterial geometries are efficiently matched to the generated clinical data, both increasing and complementing the variability of the virtual population.