Enhanced cellular uptake of aminosilane-coated superparamagnetic iron oxide nanoparticles in mammalian cell lines

Xiao-Ming Zhu1, Yi-Xiang J Wang1, Ken Cham-Fai Leung2,3, Siu-Fung Lee2, Feng Zhao1, Da-Wei Wang2, Josie MY Lai4, Chao Wan4, Christopher HK Cheng4, Anil T Ahuja11Department of Imaging and Interventional Radiology, Prince of Wales Hospital, The Chinese University of Hong Kong, Shatin, NT, Hong Kong SA...

Descripción completa

Guardado en:
Detalles Bibliográficos
Autores principales: Zhu XM, Wang YX, Leung KCF, Lee SF, Zhao F, Wang DW, Lai JMY, Wan C, Cheng CHK, Ahuja AT
Formato: article
Lenguaje:EN
Publicado: Dove Medical Press 2012
Materias:
Acceso en línea:https://doaj.org/article/611aa9badc4a4b0fa6b899b5a1799e0d
Etiquetas: Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
id oai:doaj.org-article:611aa9badc4a4b0fa6b899b5a1799e0d
record_format dspace
spelling oai:doaj.org-article:611aa9badc4a4b0fa6b899b5a1799e0d2021-12-02T05:10:27ZEnhanced cellular uptake of aminosilane-coated superparamagnetic iron oxide nanoparticles in mammalian cell lines1176-91141178-2013https://doaj.org/article/611aa9badc4a4b0fa6b899b5a1799e0d2012-02-01T00:00:00Zhttp://www.dovepress.com/enhanced-cellular-uptake-of-aminosilane-coated-superparamagnetic-iron--a9311https://doaj.org/toc/1176-9114https://doaj.org/toc/1178-2013Xiao-Ming Zhu1, Yi-Xiang J Wang1, Ken Cham-Fai Leung2,3, Siu-Fung Lee2, Feng Zhao1, Da-Wei Wang2, Josie MY Lai4, Chao Wan4, Christopher HK Cheng4, Anil T Ahuja11Department of Imaging and Interventional Radiology, Prince of Wales Hospital, The Chinese University of Hong Kong, Shatin, NT, Hong Kong SAR; 2Institute of Molecular Functional Materials and Department of Chemistry, The Chinese University of Hong Kong, Shatin, NT, Hong Kong SAR; 3Institute of Creativity and Department of Chemistry, The Hong Kong Baptist University, Kowloon Tong, Kowloon, Hong Kong SAR; 4School of Biomedical Sciences, The Chinese University of Hong Kong, Shatin, NT, Hong KongPurpose: To compare the cellular uptake efficiency and cytotoxicity of aminosilane (SiO2-NH2)-coated superparamagnetic iron oxide (SPIO@SiO2-NH2) nanoparticles with three other types of SPIO nanoparticles coated with SiO2 (SPIO@SiO2), dextran (SPIO@dextran), or bare SPIO in mammalian cell lines.Materials and methods: Four types of monodispersed SPIO nanoparticles with a SPIO core size of 7 nm and an overall size in a range of 7–15 nm were synthesized. The mammalian cell lines of MCF-7, MDA-MB-231, HT-29, RAW264.7, L929, HepG2, PC-3, U-87 MG, and mouse mesenchymal stem cells (MSCs) were incubated with four types of SPIO nanoparticles for 24 hours in the serum-free culture medium Dulbecco’s modified Eagle’s medium (DMEM) with 4.5 µg/mL iron concentration. The cellular uptake efficiencies of SPIO nanoparticles were compared by Prussian blue staining and intracellular iron quantification. In vitro magnetic resonance imaging of MSC pellets after SPIO labeling was performed at 3 T. The effect of each SPIO nanoparticle on the cell viability of RAW 264.7 (mouse monocyte/macrophage) cells was also evaluated.Results: Transmission electron microscopy demonstrated surface coating with SiO2-NH2, SiO2, and dextran prevented SPIO nanoparticle aggregation in DMEM culture medium. MCF-7, MDA-MB-231, and HT-29 cells failed to show notable iron uptake. For all the remaining six cell lines, Prussian blue staining and intracellular iron quantification demonstrated that SPIO@SiO2-NH2 nanoparticles had the highest cellular uptake efficiency. SPIO@SiO2-NH2, bare SPIO, and SPIO@dextran nanoparticles did not affect RAW 264.7 cell viability up to 200 µg Fe/mL, while SPIO@SiO2 reduced RAW 264.7 cell viability from 10 to 200 µg Fe/mL in a dose-dependent manner.Conclusion: Cellular uptake efficiency of SPIO nanoparticles depends on both the cell type and SPIO surface characteristics. Aminosilane surface coating enhanced the cellular uptake efficiency without inducing cytotoxicity in a number of cell lines.Keywords: magnetic nanoparticles, SPIO, iron oxide, surface coating, cellular uptakeZhu XMWang YXLeung KCFLee SFZhao FWang DWLai JMYWan CCheng CHKAhuja ATDove Medical PressarticleMedicine (General)R5-920ENInternational Journal of Nanomedicine, Vol 2012, Iss default, Pp 953-964 (2012)
institution DOAJ
collection DOAJ
language EN
topic Medicine (General)
R5-920
spellingShingle Medicine (General)
R5-920
Zhu XM
Wang YX
Leung KCF
Lee SF
Zhao F
Wang DW
Lai JMY
Wan C
Cheng CHK
Ahuja AT
Enhanced cellular uptake of aminosilane-coated superparamagnetic iron oxide nanoparticles in mammalian cell lines
description Xiao-Ming Zhu1, Yi-Xiang J Wang1, Ken Cham-Fai Leung2,3, Siu-Fung Lee2, Feng Zhao1, Da-Wei Wang2, Josie MY Lai4, Chao Wan4, Christopher HK Cheng4, Anil T Ahuja11Department of Imaging and Interventional Radiology, Prince of Wales Hospital, The Chinese University of Hong Kong, Shatin, NT, Hong Kong SAR; 2Institute of Molecular Functional Materials and Department of Chemistry, The Chinese University of Hong Kong, Shatin, NT, Hong Kong SAR; 3Institute of Creativity and Department of Chemistry, The Hong Kong Baptist University, Kowloon Tong, Kowloon, Hong Kong SAR; 4School of Biomedical Sciences, The Chinese University of Hong Kong, Shatin, NT, Hong KongPurpose: To compare the cellular uptake efficiency and cytotoxicity of aminosilane (SiO2-NH2)-coated superparamagnetic iron oxide (SPIO@SiO2-NH2) nanoparticles with three other types of SPIO nanoparticles coated with SiO2 (SPIO@SiO2), dextran (SPIO@dextran), or bare SPIO in mammalian cell lines.Materials and methods: Four types of monodispersed SPIO nanoparticles with a SPIO core size of 7 nm and an overall size in a range of 7–15 nm were synthesized. The mammalian cell lines of MCF-7, MDA-MB-231, HT-29, RAW264.7, L929, HepG2, PC-3, U-87 MG, and mouse mesenchymal stem cells (MSCs) were incubated with four types of SPIO nanoparticles for 24 hours in the serum-free culture medium Dulbecco’s modified Eagle’s medium (DMEM) with 4.5 µg/mL iron concentration. The cellular uptake efficiencies of SPIO nanoparticles were compared by Prussian blue staining and intracellular iron quantification. In vitro magnetic resonance imaging of MSC pellets after SPIO labeling was performed at 3 T. The effect of each SPIO nanoparticle on the cell viability of RAW 264.7 (mouse monocyte/macrophage) cells was also evaluated.Results: Transmission electron microscopy demonstrated surface coating with SiO2-NH2, SiO2, and dextran prevented SPIO nanoparticle aggregation in DMEM culture medium. MCF-7, MDA-MB-231, and HT-29 cells failed to show notable iron uptake. For all the remaining six cell lines, Prussian blue staining and intracellular iron quantification demonstrated that SPIO@SiO2-NH2 nanoparticles had the highest cellular uptake efficiency. SPIO@SiO2-NH2, bare SPIO, and SPIO@dextran nanoparticles did not affect RAW 264.7 cell viability up to 200 µg Fe/mL, while SPIO@SiO2 reduced RAW 264.7 cell viability from 10 to 200 µg Fe/mL in a dose-dependent manner.Conclusion: Cellular uptake efficiency of SPIO nanoparticles depends on both the cell type and SPIO surface characteristics. Aminosilane surface coating enhanced the cellular uptake efficiency without inducing cytotoxicity in a number of cell lines.Keywords: magnetic nanoparticles, SPIO, iron oxide, surface coating, cellular uptake
format article
author Zhu XM
Wang YX
Leung KCF
Lee SF
Zhao F
Wang DW
Lai JMY
Wan C
Cheng CHK
Ahuja AT
author_facet Zhu XM
Wang YX
Leung KCF
Lee SF
Zhao F
Wang DW
Lai JMY
Wan C
Cheng CHK
Ahuja AT
author_sort Zhu XM
title Enhanced cellular uptake of aminosilane-coated superparamagnetic iron oxide nanoparticles in mammalian cell lines
title_short Enhanced cellular uptake of aminosilane-coated superparamagnetic iron oxide nanoparticles in mammalian cell lines
title_full Enhanced cellular uptake of aminosilane-coated superparamagnetic iron oxide nanoparticles in mammalian cell lines
title_fullStr Enhanced cellular uptake of aminosilane-coated superparamagnetic iron oxide nanoparticles in mammalian cell lines
title_full_unstemmed Enhanced cellular uptake of aminosilane-coated superparamagnetic iron oxide nanoparticles in mammalian cell lines
title_sort enhanced cellular uptake of aminosilane-coated superparamagnetic iron oxide nanoparticles in mammalian cell lines
publisher Dove Medical Press
publishDate 2012
url https://doaj.org/article/611aa9badc4a4b0fa6b899b5a1799e0d
work_keys_str_mv AT zhuxm enhancedcellularuptakeofaminosilanecoatedsuperparamagneticironoxidenanoparticlesinmammaliancelllines
AT wangyx enhancedcellularuptakeofaminosilanecoatedsuperparamagneticironoxidenanoparticlesinmammaliancelllines
AT leungkcf enhancedcellularuptakeofaminosilanecoatedsuperparamagneticironoxidenanoparticlesinmammaliancelllines
AT leesf enhancedcellularuptakeofaminosilanecoatedsuperparamagneticironoxidenanoparticlesinmammaliancelllines
AT zhaof enhancedcellularuptakeofaminosilanecoatedsuperparamagneticironoxidenanoparticlesinmammaliancelllines
AT wangdw enhancedcellularuptakeofaminosilanecoatedsuperparamagneticironoxidenanoparticlesinmammaliancelllines
AT laijmy enhancedcellularuptakeofaminosilanecoatedsuperparamagneticironoxidenanoparticlesinmammaliancelllines
AT wanc enhancedcellularuptakeofaminosilanecoatedsuperparamagneticironoxidenanoparticlesinmammaliancelllines
AT chengchk enhancedcellularuptakeofaminosilanecoatedsuperparamagneticironoxidenanoparticlesinmammaliancelllines
AT ahujaat enhancedcellularuptakeofaminosilanecoatedsuperparamagneticironoxidenanoparticlesinmammaliancelllines
_version_ 1718400533379678208