Modeling Heterogeneous Brain Dynamics of Depression and Melancholia Using Energy Landscape Analysis

Our current understanding of melancholic depression is shaped by its position in the depression spectrum. The lack of consensus on how it should be treated—whether as a subtype of depression, or as a distinct disorder altogethe—interferes with the recovery of suffering patients. In this study, we an...

Descripción completa

Guardado en:
Detalles Bibliográficos
Autores principales: Paul Rossener Regonia, Masahiro Takamura, Takashi Nakano, Naho Ichikawa, Alan Fermin, Go Okada, Yasumasa Okamoto, Shigeto Yamawaki, Kazushi Ikeda, Junichiro Yoshimoto
Formato: article
Lenguaje:EN
Publicado: Frontiers Media S.A. 2021
Materias:
Acceso en línea:https://doaj.org/article/612dff4db77144ae96492ba05a163c73
Etiquetas: Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
id oai:doaj.org-article:612dff4db77144ae96492ba05a163c73
record_format dspace
spelling oai:doaj.org-article:612dff4db77144ae96492ba05a163c732021-12-01T02:09:10ZModeling Heterogeneous Brain Dynamics of Depression and Melancholia Using Energy Landscape Analysis1664-064010.3389/fpsyt.2021.780997https://doaj.org/article/612dff4db77144ae96492ba05a163c732021-11-01T00:00:00Zhttps://www.frontiersin.org/articles/10.3389/fpsyt.2021.780997/fullhttps://doaj.org/toc/1664-0640Our current understanding of melancholic depression is shaped by its position in the depression spectrum. The lack of consensus on how it should be treated—whether as a subtype of depression, or as a distinct disorder altogethe—interferes with the recovery of suffering patients. In this study, we analyzed brain state energy landscape models of melancholic depression, in contrast to healthy and non-melancholic energy landscapes. Our analyses showed significant group differences on basin energy, basin frequency, and transition dynamics in several functional brain networks such as basal ganglia, dorsal default mode, and left executive control networks. Furthermore, we found evidences suggesting the connection between energy landscape characteristics (basin characteristics) and depressive symptom scores (BDI-II and SHAPS). These results indicate that melancholic depression is distinguishable from its non-melancholic counterpart, not only in terms of depression severity, but also in brain dynamics.Paul Rossener RegoniaPaul Rossener RegoniaMasahiro TakamuraMasahiro TakamuraTakashi NakanoTakashi NakanoNaho IchikawaAlan FerminGo OkadaYasumasa OkamotoYasumasa OkamotoShigeto YamawakiKazushi IkedaJunichiro YoshimotoFrontiers Media S.A.articledepressionmelancholiaenergy landscape analysisresting state fMRIfunctional brain networkPsychiatryRC435-571ENFrontiers in Psychiatry, Vol 12 (2021)
institution DOAJ
collection DOAJ
language EN
topic depression
melancholia
energy landscape analysis
resting state fMRI
functional brain network
Psychiatry
RC435-571
spellingShingle depression
melancholia
energy landscape analysis
resting state fMRI
functional brain network
Psychiatry
RC435-571
Paul Rossener Regonia
Paul Rossener Regonia
Masahiro Takamura
Masahiro Takamura
Takashi Nakano
Takashi Nakano
Naho Ichikawa
Alan Fermin
Go Okada
Yasumasa Okamoto
Yasumasa Okamoto
Shigeto Yamawaki
Kazushi Ikeda
Junichiro Yoshimoto
Modeling Heterogeneous Brain Dynamics of Depression and Melancholia Using Energy Landscape Analysis
description Our current understanding of melancholic depression is shaped by its position in the depression spectrum. The lack of consensus on how it should be treated—whether as a subtype of depression, or as a distinct disorder altogethe—interferes with the recovery of suffering patients. In this study, we analyzed brain state energy landscape models of melancholic depression, in contrast to healthy and non-melancholic energy landscapes. Our analyses showed significant group differences on basin energy, basin frequency, and transition dynamics in several functional brain networks such as basal ganglia, dorsal default mode, and left executive control networks. Furthermore, we found evidences suggesting the connection between energy landscape characteristics (basin characteristics) and depressive symptom scores (BDI-II and SHAPS). These results indicate that melancholic depression is distinguishable from its non-melancholic counterpart, not only in terms of depression severity, but also in brain dynamics.
format article
author Paul Rossener Regonia
Paul Rossener Regonia
Masahiro Takamura
Masahiro Takamura
Takashi Nakano
Takashi Nakano
Naho Ichikawa
Alan Fermin
Go Okada
Yasumasa Okamoto
Yasumasa Okamoto
Shigeto Yamawaki
Kazushi Ikeda
Junichiro Yoshimoto
author_facet Paul Rossener Regonia
Paul Rossener Regonia
Masahiro Takamura
Masahiro Takamura
Takashi Nakano
Takashi Nakano
Naho Ichikawa
Alan Fermin
Go Okada
Yasumasa Okamoto
Yasumasa Okamoto
Shigeto Yamawaki
Kazushi Ikeda
Junichiro Yoshimoto
author_sort Paul Rossener Regonia
title Modeling Heterogeneous Brain Dynamics of Depression and Melancholia Using Energy Landscape Analysis
title_short Modeling Heterogeneous Brain Dynamics of Depression and Melancholia Using Energy Landscape Analysis
title_full Modeling Heterogeneous Brain Dynamics of Depression and Melancholia Using Energy Landscape Analysis
title_fullStr Modeling Heterogeneous Brain Dynamics of Depression and Melancholia Using Energy Landscape Analysis
title_full_unstemmed Modeling Heterogeneous Brain Dynamics of Depression and Melancholia Using Energy Landscape Analysis
title_sort modeling heterogeneous brain dynamics of depression and melancholia using energy landscape analysis
publisher Frontiers Media S.A.
publishDate 2021
url https://doaj.org/article/612dff4db77144ae96492ba05a163c73
work_keys_str_mv AT paulrossenerregonia modelingheterogeneousbraindynamicsofdepressionandmelancholiausingenergylandscapeanalysis
AT paulrossenerregonia modelingheterogeneousbraindynamicsofdepressionandmelancholiausingenergylandscapeanalysis
AT masahirotakamura modelingheterogeneousbraindynamicsofdepressionandmelancholiausingenergylandscapeanalysis
AT masahirotakamura modelingheterogeneousbraindynamicsofdepressionandmelancholiausingenergylandscapeanalysis
AT takashinakano modelingheterogeneousbraindynamicsofdepressionandmelancholiausingenergylandscapeanalysis
AT takashinakano modelingheterogeneousbraindynamicsofdepressionandmelancholiausingenergylandscapeanalysis
AT nahoichikawa modelingheterogeneousbraindynamicsofdepressionandmelancholiausingenergylandscapeanalysis
AT alanfermin modelingheterogeneousbraindynamicsofdepressionandmelancholiausingenergylandscapeanalysis
AT gookada modelingheterogeneousbraindynamicsofdepressionandmelancholiausingenergylandscapeanalysis
AT yasumasaokamoto modelingheterogeneousbraindynamicsofdepressionandmelancholiausingenergylandscapeanalysis
AT yasumasaokamoto modelingheterogeneousbraindynamicsofdepressionandmelancholiausingenergylandscapeanalysis
AT shigetoyamawaki modelingheterogeneousbraindynamicsofdepressionandmelancholiausingenergylandscapeanalysis
AT kazushiikeda modelingheterogeneousbraindynamicsofdepressionandmelancholiausingenergylandscapeanalysis
AT junichiroyoshimoto modelingheterogeneousbraindynamicsofdepressionandmelancholiausingenergylandscapeanalysis
_version_ 1718405904777347072