Investigation on ultrasonic assisted friction stir welding of aluminum/steel dissimilar alloys
The extensive use of light metal material such as aluminum has brought about problems in its joining with steel. However, the weak metallurgical bonding between the dissimilar materials and the formation of hard and brittle intermetallic compounds (IMCs) lead to unsatisfactory joint strength. Aiming...
Guardado en:
Autores principales: | , , , , |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
De Gruyter
2021
|
Materias: | |
Acceso en línea: | https://doaj.org/article/613ac03b3a9e493cbb6594ee0de64a2a |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
id |
oai:doaj.org-article:613ac03b3a9e493cbb6594ee0de64a2a |
---|---|
record_format |
dspace |
spelling |
oai:doaj.org-article:613ac03b3a9e493cbb6594ee0de64a2a2021-12-05T14:10:50ZInvestigation on ultrasonic assisted friction stir welding of aluminum/steel dissimilar alloys2191-032410.1515/htmp-2021-0011https://doaj.org/article/613ac03b3a9e493cbb6594ee0de64a2a2021-03-01T00:00:00Zhttps://doi.org/10.1515/htmp-2021-0011https://doaj.org/toc/2191-0324The extensive use of light metal material such as aluminum has brought about problems in its joining with steel. However, the weak metallurgical bonding between the dissimilar materials and the formation of hard and brittle intermetallic compounds (IMCs) lead to unsatisfactory joint strength. Aiming at achieving high-quality joining of aluminum and steel, 6061-T6 aluminum and 301L steel alloys were lap joined by ultrasonic assisted friction stir lap welding (UaFSLW) in this study. The UaFSLW joints were well formed with uniform flashes and even arc lines. The strong plastic flow of the aluminum material driven by the dual effects of mechanical stirring and ultrasonic vibration inhibited the excessive growth of the Al–Fe IMCs at the lap interface. Thanks to the enhanced metallurgical bonding and the effective control of the layer thickness of IMCs, the tensile load of the UaFSLW joint under 1,800 rpm reached 16.5 kN, which was an increase of 27.9% compared to that of the conventional FSLW joint.Hong KairongWang YongZhou JianjunZhou CanfengWang LumingDe Gruyterarticleultrasonic vibrationfriction stir lap weldingdissimilar materialstensile propertyTechnologyTChemical technologyTP1-1185Chemicals: Manufacture, use, etc.TP200-248ENHigh Temperature Materials and Processes, Vol 40, Iss 1, Pp 45-52 (2021) |
institution |
DOAJ |
collection |
DOAJ |
language |
EN |
topic |
ultrasonic vibration friction stir lap welding dissimilar materials tensile property Technology T Chemical technology TP1-1185 Chemicals: Manufacture, use, etc. TP200-248 |
spellingShingle |
ultrasonic vibration friction stir lap welding dissimilar materials tensile property Technology T Chemical technology TP1-1185 Chemicals: Manufacture, use, etc. TP200-248 Hong Kairong Wang Yong Zhou Jianjun Zhou Canfeng Wang Luming Investigation on ultrasonic assisted friction stir welding of aluminum/steel dissimilar alloys |
description |
The extensive use of light metal material such as aluminum has brought about problems in its joining with steel. However, the weak metallurgical bonding between the dissimilar materials and the formation of hard and brittle intermetallic compounds (IMCs) lead to unsatisfactory joint strength. Aiming at achieving high-quality joining of aluminum and steel, 6061-T6 aluminum and 301L steel alloys were lap joined by ultrasonic assisted friction stir lap welding (UaFSLW) in this study. The UaFSLW joints were well formed with uniform flashes and even arc lines. The strong plastic flow of the aluminum material driven by the dual effects of mechanical stirring and ultrasonic vibration inhibited the excessive growth of the Al–Fe IMCs at the lap interface. Thanks to the enhanced metallurgical bonding and the effective control of the layer thickness of IMCs, the tensile load of the UaFSLW joint under 1,800 rpm reached 16.5 kN, which was an increase of 27.9% compared to that of the conventional FSLW joint. |
format |
article |
author |
Hong Kairong Wang Yong Zhou Jianjun Zhou Canfeng Wang Luming |
author_facet |
Hong Kairong Wang Yong Zhou Jianjun Zhou Canfeng Wang Luming |
author_sort |
Hong Kairong |
title |
Investigation on ultrasonic assisted friction stir welding of aluminum/steel dissimilar alloys |
title_short |
Investigation on ultrasonic assisted friction stir welding of aluminum/steel dissimilar alloys |
title_full |
Investigation on ultrasonic assisted friction stir welding of aluminum/steel dissimilar alloys |
title_fullStr |
Investigation on ultrasonic assisted friction stir welding of aluminum/steel dissimilar alloys |
title_full_unstemmed |
Investigation on ultrasonic assisted friction stir welding of aluminum/steel dissimilar alloys |
title_sort |
investigation on ultrasonic assisted friction stir welding of aluminum/steel dissimilar alloys |
publisher |
De Gruyter |
publishDate |
2021 |
url |
https://doaj.org/article/613ac03b3a9e493cbb6594ee0de64a2a |
work_keys_str_mv |
AT hongkairong investigationonultrasonicassistedfrictionstirweldingofaluminumsteeldissimilaralloys AT wangyong investigationonultrasonicassistedfrictionstirweldingofaluminumsteeldissimilaralloys AT zhoujianjun investigationonultrasonicassistedfrictionstirweldingofaluminumsteeldissimilaralloys AT zhoucanfeng investigationonultrasonicassistedfrictionstirweldingofaluminumsteeldissimilaralloys AT wangluming investigationonultrasonicassistedfrictionstirweldingofaluminumsteeldissimilaralloys |
_version_ |
1718371670330179584 |