Biocompatible graphene-zirconia nanocomposite as a cyto-safe immunosensor for the rapid detection of carcinoembryonic antigen

Abstract Graphene-based materials have gained remarkable attention in numerous disciplines owing to their unique electrochemical properties. Out of various hybridized nanocomposites, graphene-zirconia nanocomposite (GZ) was distinctive due to its biocompatibility. Zirconia nanoparticles serve as spa...

Descripción completa

Guardado en:
Detalles Bibliográficos
Autores principales: Lih Poh Lin, Shiau-Ying Tham, Hwei-San Loh, Michelle T. T. Tan
Formato: article
Lenguaje:EN
Publicado: Nature Portfolio 2021
Materias:
R
Q
Acceso en línea:https://doaj.org/article/614746edde184e7d8cb35adc3a9cfcc7
Etiquetas: Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
id oai:doaj.org-article:614746edde184e7d8cb35adc3a9cfcc7
record_format dspace
spelling oai:doaj.org-article:614746edde184e7d8cb35adc3a9cfcc72021-11-21T12:17:48ZBiocompatible graphene-zirconia nanocomposite as a cyto-safe immunosensor for the rapid detection of carcinoembryonic antigen10.1038/s41598-021-99498-02045-2322https://doaj.org/article/614746edde184e7d8cb35adc3a9cfcc72021-11-01T00:00:00Zhttps://doi.org/10.1038/s41598-021-99498-0https://doaj.org/toc/2045-2322Abstract Graphene-based materials have gained remarkable attention in numerous disciplines owing to their unique electrochemical properties. Out of various hybridized nanocomposites, graphene-zirconia nanocomposite (GZ) was distinctive due to its biocompatibility. Zirconia nanoparticles serve as spacers that reduce the stacking of graphene and improve the electrochemical performance of the material. Considering that lungs and skin suffer the greatest exposure to nanoparticles, this study aimed to evaluate the cytotoxicity of the as-synthesized GZ nanocomposites on MRC5 (lung cells) and HaCaT (skin cells) via morphological observation and cell viability assay using 3-(4,5 dimethylthiazol-2-yl)-(2,5-diphenyltetrazolium bromide) tetrazolium (MTT). GZ-treated cells showed a comparable proliferation rate and morphology with untreated cells under microscopic evaluation. Based on MTT results, the IC50 values of GZ were > 500 µg/ml for MRC5 and HaCaT cells. The excellent biocompatibility was the supremacy of GZ over other nanocomposites applied as electrode materials in biosensors. GZ was functionalized with biolinker for the detection of carcinoembryonic antigen (CEA). The proposed immunosensor exhibited good responses towards CEA detection, with a 4.25 pg/ml LOD and correlation coefficient of R2 = 0.99 within a linear working range from 0.01 to 10 ng/ml. The performance of the immunosensor to detect CEA present in human serum was also evaluated. Good recovery of CEA was found, suggesting that the proposed immunosensor possess a high affinity to CEA even in a complex biological matrix, rendering it a promising sensing platform for real sample analysis and open a new way for the detection of cancer-associated proteins.Lih Poh LinShiau-Ying ThamHwei-San LohMichelle T. T. TanNature PortfolioarticleMedicineRScienceQENScientific Reports, Vol 11, Iss 1, Pp 1-17 (2021)
institution DOAJ
collection DOAJ
language EN
topic Medicine
R
Science
Q
spellingShingle Medicine
R
Science
Q
Lih Poh Lin
Shiau-Ying Tham
Hwei-San Loh
Michelle T. T. Tan
Biocompatible graphene-zirconia nanocomposite as a cyto-safe immunosensor for the rapid detection of carcinoembryonic antigen
description Abstract Graphene-based materials have gained remarkable attention in numerous disciplines owing to their unique electrochemical properties. Out of various hybridized nanocomposites, graphene-zirconia nanocomposite (GZ) was distinctive due to its biocompatibility. Zirconia nanoparticles serve as spacers that reduce the stacking of graphene and improve the electrochemical performance of the material. Considering that lungs and skin suffer the greatest exposure to nanoparticles, this study aimed to evaluate the cytotoxicity of the as-synthesized GZ nanocomposites on MRC5 (lung cells) and HaCaT (skin cells) via morphological observation and cell viability assay using 3-(4,5 dimethylthiazol-2-yl)-(2,5-diphenyltetrazolium bromide) tetrazolium (MTT). GZ-treated cells showed a comparable proliferation rate and morphology with untreated cells under microscopic evaluation. Based on MTT results, the IC50 values of GZ were > 500 µg/ml for MRC5 and HaCaT cells. The excellent biocompatibility was the supremacy of GZ over other nanocomposites applied as electrode materials in biosensors. GZ was functionalized with biolinker for the detection of carcinoembryonic antigen (CEA). The proposed immunosensor exhibited good responses towards CEA detection, with a 4.25 pg/ml LOD and correlation coefficient of R2 = 0.99 within a linear working range from 0.01 to 10 ng/ml. The performance of the immunosensor to detect CEA present in human serum was also evaluated. Good recovery of CEA was found, suggesting that the proposed immunosensor possess a high affinity to CEA even in a complex biological matrix, rendering it a promising sensing platform for real sample analysis and open a new way for the detection of cancer-associated proteins.
format article
author Lih Poh Lin
Shiau-Ying Tham
Hwei-San Loh
Michelle T. T. Tan
author_facet Lih Poh Lin
Shiau-Ying Tham
Hwei-San Loh
Michelle T. T. Tan
author_sort Lih Poh Lin
title Biocompatible graphene-zirconia nanocomposite as a cyto-safe immunosensor for the rapid detection of carcinoembryonic antigen
title_short Biocompatible graphene-zirconia nanocomposite as a cyto-safe immunosensor for the rapid detection of carcinoembryonic antigen
title_full Biocompatible graphene-zirconia nanocomposite as a cyto-safe immunosensor for the rapid detection of carcinoembryonic antigen
title_fullStr Biocompatible graphene-zirconia nanocomposite as a cyto-safe immunosensor for the rapid detection of carcinoembryonic antigen
title_full_unstemmed Biocompatible graphene-zirconia nanocomposite as a cyto-safe immunosensor for the rapid detection of carcinoembryonic antigen
title_sort biocompatible graphene-zirconia nanocomposite as a cyto-safe immunosensor for the rapid detection of carcinoembryonic antigen
publisher Nature Portfolio
publishDate 2021
url https://doaj.org/article/614746edde184e7d8cb35adc3a9cfcc7
work_keys_str_mv AT lihpohlin biocompatiblegraphenezirconiananocompositeasacytosafeimmunosensorfortherapiddetectionofcarcinoembryonicantigen
AT shiauyingtham biocompatiblegraphenezirconiananocompositeasacytosafeimmunosensorfortherapiddetectionofcarcinoembryonicantigen
AT hweisanloh biocompatiblegraphenezirconiananocompositeasacytosafeimmunosensorfortherapiddetectionofcarcinoembryonicantigen
AT michelletttan biocompatiblegraphenezirconiananocompositeasacytosafeimmunosensorfortherapiddetectionofcarcinoembryonicantigen
_version_ 1718419067766833152