Room temperature synthesis of novel worm like tin oxide nanoparticles for photocatalytic degradation of organic pollutants

Herein, we report the synthesis of novel worm like structured SnO2 nanoparticles photocatalysts by chemical precipitation route from sodium stannate in the absence of a precipitating agent. The physico-chemical characteristics of the synthesized SnO2 were studied using powder X-ray diffraction (PXRD...

Descripción completa

Guardado en:
Detalles Bibliográficos
Autores principales: Sivasankar Koppala, Ramdas Balan, Indranil Banerjee, Kangqiang Li, Lei Xu, Hua Liu, D. Kishore Kumar, Kakarla Raghava Reddy, Veera Sadhu
Formato: article
Lenguaje:EN
Publicado: KeAi Communications Co., Ltd. 2021
Materias:
Acceso en línea:https://doaj.org/article/6147d571407c40db81df685e98df3dc7
Etiquetas: Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
Descripción
Sumario:Herein, we report the synthesis of novel worm like structured SnO2 nanoparticles photocatalysts by chemical precipitation route from sodium stannate in the absence of a precipitating agent. The physico-chemical characteristics of the synthesized SnO2 were studied using powder X-ray diffraction (PXRD), Diffuse Reflectance Spectroscopy (DRS), Photoluminescence (PL), and High resolution transmission electron microscope (HRTEM) studies. PXRD and HRTEM analysis reveals the formation of amorphous SnO2 in the tetragonal crystal structure. XPS and PL characterization affirmed the presence of oxygen defects in SnO2, which could be due to Sn2+ present in the lattices. The optical band gap calculated using Kubelka-Munk method to be 3.8 eV. Photocatalytic studies of the prepared SnO2 catalyst showed 92% of Rhodamine-B (RhB) degradation in 120 min under UV irradiation. The enhanced dye degradation activity is attributed to oxygen defects in the SnO2 catalyst, which are responsible for the enhanced charge separation and inhibition of electron-hole pair recombination by trapping photogenerated electrons.