Cis-regulatory evolution in prokaryotes revealed by interspecific archaeal hybrids
Abstract The study of allele-specific expression (ASE) in interspecific hybrids has played a central role in our understanding of a wide range of phenomena, including genomic imprinting, X-chromosome inactivation, and cis-regulatory evolution. However across the hundreds of studies of hybrid ASE, al...
Guardado en:
Autores principales: | , , , , , , |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
Nature Portfolio
2017
|
Materias: | |
Acceso en línea: | https://doaj.org/article/614b5491e89145829eb873e698502a3e |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
Sumario: | Abstract The study of allele-specific expression (ASE) in interspecific hybrids has played a central role in our understanding of a wide range of phenomena, including genomic imprinting, X-chromosome inactivation, and cis-regulatory evolution. However across the hundreds of studies of hybrid ASE, all have been restricted to sexually reproducing eukaryotes, leaving a major gap in our understanding of the genomic patterns of cis-regulatory evolution in prokaryotes. Here we introduce a method to generate stable hybrids between two species of halophilic archaea, and measure genome-wide ASE in these hybrids with RNA-seq. We found that over half of all genes have significant ASE, and that genes encoding kinases show evidence of lineage-specific selection on their cis-regulation. This pattern of polygenic selection suggested species-specific adaptation to low phosphate conditions, which we confirmed with growth experiments. Altogether, our work extends the study of ASE to archaea, and suggests that cis-regulation can evolve under polygenic lineage-specific selection in prokaryotes. |
---|