Impact of a deep learning assistant on the histopathologic classification of liver cancer
Abstract Artificial intelligence (AI) algorithms continue to rival human performance on a variety of clinical tasks, while their actual impact on human diagnosticians, when incorporated into clinical workflows, remains relatively unexplored. In this study, we developed a deep learning-based assistan...
Enregistré dans:
| Auteurs principaux: | Amirhossein Kiani, Bora Uyumazturk, Pranav Rajpurkar, Alex Wang, Rebecca Gao, Erik Jones, Yifan Yu, Curtis P. Langlotz, Robyn L. Ball, Thomas J. Montine, Brock A. Martin, Gerald J. Berry, Michael G. Ozawa, Florette K. Hazard, Ryanne A. Brown, Simon B. Chen, Mona Wood, Libby S. Allard, Lourdes Ylagan, Andrew Y. Ng, Jeanne Shen |
|---|---|
| Format: | article |
| Langue: | EN |
| Publié: |
Nature Portfolio
2020
|
| Sujets: | |
| Accès en ligne: | https://doaj.org/article/615de5de8f5543b69db4c81e88e47231 |
| Tags: |
Ajouter un tag
Pas de tags, Soyez le premier à ajouter un tag!
|
Documents similaires
-
CheXaid: deep learning assistance for physician diagnosis of tuberculosis using chest x-rays in patients with HIV
par: Pranav Rajpurkar, et autres
Publié: (2020) -
Histopathologic Changes of Rat Tracheal Mucosa Following Formaldehyde Exposure
par: Davarian,Ali, et autres
Publié: (2005) -
Can Formaldehyde Exposure Induce Histopathologic and Morphometric Changes on Rat Kidney?
par: Golalipour,Mohammad Jafar, et autres
Publié: (2009) -
Histopathology
Publié: (1977) -
Clinical, Dermoscopic, and Histopathologic Aspects of Amelanotic Lentigo Maligna Melanoma
par: Catalin Mihai Popescu, et autres
Publié: (2021)