Impact of a deep learning assistant on the histopathologic classification of liver cancer
Abstract Artificial intelligence (AI) algorithms continue to rival human performance on a variety of clinical tasks, while their actual impact on human diagnosticians, when incorporated into clinical workflows, remains relatively unexplored. In this study, we developed a deep learning-based assistan...
Guardado en:
Autores principales: | Amirhossein Kiani, Bora Uyumazturk, Pranav Rajpurkar, Alex Wang, Rebecca Gao, Erik Jones, Yifan Yu, Curtis P. Langlotz, Robyn L. Ball, Thomas J. Montine, Brock A. Martin, Gerald J. Berry, Michael G. Ozawa, Florette K. Hazard, Ryanne A. Brown, Simon B. Chen, Mona Wood, Libby S. Allard, Lourdes Ylagan, Andrew Y. Ng, Jeanne Shen |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
Nature Portfolio
2020
|
Materias: | |
Acceso en línea: | https://doaj.org/article/615de5de8f5543b69db4c81e88e47231 |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
Ejemplares similares
-
CheXaid: deep learning assistance for physician diagnosis of tuberculosis using chest x-rays in patients with HIV
por: Pranav Rajpurkar, et al.
Publicado: (2020) -
Histopathologic Changes of Rat Tracheal Mucosa Following Formaldehyde Exposure
por: Davarian,Ali, et al.
Publicado: (2005) -
Can Formaldehyde Exposure Induce Histopathologic and Morphometric Changes on Rat Kidney?
por: Golalipour,Mohammad Jafar, et al.
Publicado: (2009) -
Histopathology
Publicado: (1977) -
Clinical, Dermoscopic, and Histopathologic Aspects of Amelanotic Lentigo Maligna Melanoma
por: Catalin Mihai Popescu, et al.
Publicado: (2021)