Automated Training Data Generation from Spectral Indexes for Mapping Surface Water Extent with Sentinel-2 Satellite Imagery at 10 m and 20 m Resolutions
This study presents an automated methodology to generate training data for surface water mapping from a single Sentinel-2 granule at 10 m (4 band, VIS/NIR) or 20 m (9 band, VIS/NIR/SWIR) resolution without the need for ancillary training data layers. The 20 m method incorporates an ensemble of three...
Guardado en:
Autores principales: | Kristofer Lasko, Megan C. Maloney, Sarah J. Becker, Andrew W. H. Griffin, Susan L. Lyon, Sean P. Griffin |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
MDPI AG
2021
|
Materias: | |
Acceso en línea: | https://doaj.org/article/6161a5bed89240a9842e572dcc904218 |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
Ejemplares similares
-
Characterizing Leaf Nutrients of Wetland Plants and Agricultural Crops with Nonparametric Approach Using Sentinel-2 Imagery Data
por: Mandla Dlamini, et al.
Publicado: (2021) -
Using sentinel-2 satellite imagery to develop microphytobenthos-based water quality indices in estuaries
por: Simon Oiry, et al.
Publicado: (2021) -
Research of the Dual-Band Log-Linear Analysis Model Based on Physics for Bathymetry without In-Situ Depth Data in the South China Sea
por: Weidong Zhu, et al.
Publicado: (2021) -
Predicting Equivalent Water Thickness in Wheat Using UAV Mounted Multispectral Sensor through Deep Learning Techniques
por: Adama Traore, et al.
Publicado: (2021) -
An assessment of sedimentation in Terengganu River, Malaysia using satellite imagery
por: Awatif Aziz, et al.
Publicado: (2021)