Deep learning for bias correction of MJO prediction
The Madden-Julian Oscillation (MJO) is a crucial component of the tropical weather system, but forecasting it has been challenging. Here, the authors present a deep learning bias correction method that significantly improves multi-model forecasts of the MJO amplitude and phase for up to four weeks.
Guardado en:
Autores principales: | H. Kim, Y. G. Ham, Y. S. Joo, S. W. Son |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
Nature Portfolio
2021
|
Materias: | |
Acceso en línea: | https://doaj.org/article/616bbb7f168048a5b541481dd7681e91 |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
Ejemplares similares
-
Author Correction: Interannual variability of the frequency of MJO phases and its association with two types of ENSO
por: Panini Dasgupta, et al.
Publicado: (2021) -
Interannual variability of the frequency of MJO phases and its association with two types of ENSO
por: Panini Dasgupta, et al.
Publicado: (2021) -
Role of warm ocean conditions and the MJO in the genesis and intensification of extremely severe cyclone Fani
por: Vineet Kumar Singh, et al.
Publicado: (2021) -
Publisher Correction: Mnemonic prediction errors bias hippocampal states
por: Oded Bein, et al.
Publicado: (2020) -
The impact of site-specific digital histology signatures on deep learning model accuracy and bias
por: Frederick M. Howard, et al.
Publicado: (2021)