Accurate pancreas segmentation using multi-level pyramidal pooling residual U-Net with adversarial mechanism
Abstract Background A novel multi-level pyramidal pooling residual U-Net with adversarial mechanism was proposed for organ segmentation from medical imaging, and was conducted on the challenging NIH Pancreas-CT dataset. Methods The 82 pancreatic contrast-enhanced abdominal CT volumes were split via...
Guardado en:
Autores principales: | Meiyu Li, Fenghui Lian, Chunyu Wang, Shuxu Guo |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
BMC
2021
|
Materias: | |
Acceso en línea: | https://doaj.org/article/6172d803667641d1ac167f3267bc6747 |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
Ejemplares similares
-
Road crack segmentation using an attention residual U-Net with generative adversarial
por: Xing Hu, et al.
Publicado: (2021) -
A study of generalization and compatibility performance of 3D U-Net segmentation on multiple heterogeneous liver CT datasets
por: Baochun He, et al.
Publicado: (2021) -
Adversarial Attack for SAR Target Recognition Based on UNet-Generative Adversarial Network
por: Chuan Du, et al.
Publicado: (2021) -
Development and validation of the 3D U-Net algorithm for segmentation of pelvic lymph nodes on diffusion-weighted images
por: Xiang Liu, et al.
Publicado: (2021) -
Contrast-enhanced Ultrasound for Diagnosing Pancreatic Solitary Fibrous Tumor: A Case Report
por: Lei Chen, MM, Cong Chen, MM, Qingfu Qian, MM, Zhikui Chen, PhD
Publicado: (2021)