A SAR Image Classification Algorithm Based on Multi-Feature Polarimetric Parameters Using FOA and LS-SVM
This paper presents a Synthetic Aperture Radar (SAR) image classification algorithm based on multi-feature using Fruit Fly Optimization Algorithm (FOA) and Least Square Support Vector Machine (LS-SVM). First, pixel-based information derived from three elements of coherency matrix, six parameters obt...
Guardado en:
Autores principales: | Shiyu Luo, Kamal Sarabandi, Ling Tong, Leland Pierce |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
IEEE
2019
|
Materias: | |
Acceso en línea: | https://doaj.org/article/6174aab3b64340b9b6283a7aaa8914a4 |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
Ejemplares similares
-
Synergy of multi-temporal polarimetric SAR and optical image satellite for mapping of marsh vegetation using object-based random forest algorithm
por: Bolin Fu, et al.
Publicado: (2021) -
Polarimetric Dehazing Method Based on Image Fusion and Adaptive Adjustment Algorithm
por: Yu Lei, et al.
Publicado: (2021) -
An Efficient SVM-Based Feature Selection Model for Cancer Classification Using High-Dimensional Microarray Data
por: Passent El Kafrawy, et al.
Publicado: (2021) -
An image feature selection approach for dimensionality reduction based on kNN and SVM for AkT proteins
por: Shruti Jain, et al.
Publicado: (2019) -
Polarimetric SAR Speckle Filtering Using a Nonlocal Weighted LMMSE Filter
por: Yinbin Shen, et al.
Publicado: (2021)