A network autoregressive model with GARCH effects and its applications.
In this study, a network autoregressive model with GARCH effects, denoted by NAR-GARCH, is proposed to depict the return dynamics of stock market indices. A GARCH filter is employed to marginally remove the GARCH effects of each index, and the NAR model with the Granger causality test and Pearson...
Guardado en:
Autores principales: | Shih-Feng Huang, Hsin-Han Chiang, Yu-Jun Lin |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
Public Library of Science (PLoS)
2021
|
Materias: | |
Acceso en línea: | https://doaj.org/article/6194f0a76dc647c4bb7773293a3f3553 |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
Ejemplares similares
-
An autoregressive logistic model to predict the reciprocal effects of oviductal fluid components on in vitro spermophagy by neutrophils in cattle
por: Rasoul Kowsar, et al.
Publicado: (2017) -
Selecting between autoregressive conditional heteroskedasticity models: An empirical application to the volatility of stock returns in Peru
por: RODRIGUEZ,GABRIEL
Publicado: (2017) -
Wastewater flow forecasting model based on the nonlinear autoregressive with exogenous inputs (NARX) neural network
por: Khalid El Ghazouli, et al.
Publicado: (2021) -
Efficient generative modeling of protein sequences using simple autoregressive models
por: Jeanne Trinquier, et al.
Publicado: (2021) -
A Nonlinear Autoregressive Exogenous (NARX) Neural Network Model for the Prediction of Timestamp Influence on Bitcoin Value
por: Nahla Aljojo, et al.
Publicado: (2021)