Atomistic Line Graph Neural Network for improved materials property predictions
Abstract Graph neural networks (GNN) have been shown to provide substantial performance improvements for atomistic material representation and modeling compared with descriptor-based machine learning models. While most existing GNN models for atomistic predictions are based on atomic distance inform...
Guardado en:
Autores principales: | Kamal Choudhary, Brian DeCost |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
Nature Portfolio
2021
|
Materias: | |
Acceso en línea: | https://doaj.org/article/61a150a846574ac2a1dffb7b2b7fc925 |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
Ejemplares similares
-
Benchmarking graph neural networks for materials chemistry
por: Victor Fung, et al.
Publicado: (2021) -
Graph neural networks for an accurate and interpretable prediction of the properties of polycrystalline materials
por: Minyi Dai, et al.
Publicado: (2021) -
Hydrogen embrittlement of grain boundaries in nickel: an atomistic study
por: Shan Huang, et al.
Publicado: (2017) -
Accurate and scalable graph neural network force field and molecular dynamics with direct force architecture
por: Cheol Woo Park, et al.
Publicado: (2021) -
Compositionally restricted attention-based network for materials property predictions
por: Anthony Yu-Tung Wang, et al.
Publicado: (2021)