A novel CMAQ-CNN hybrid model to forecast hourly surface-ozone concentrations 14 days in advance
Abstract Issues regarding air quality and related health concerns have prompted this study, which develops an accurate and computationally fast, efficient hybrid modeling system that combines numerical modeling and machine learning for forecasting concentrations of surface ozone. Currently available...
Guardado en:
Autores principales: | Alqamah Sayeed, Yunsoo Choi, Ebrahim Eslami, Jia Jung, Yannic Lops, Ahmed Khan Salman, Jae-Bum Lee, Hyun-Ju Park, Min-Hyeok Choi |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
Nature Portfolio
2021
|
Materias: | |
Acceso en línea: | https://doaj.org/article/61a2b4505f114dcaba24ee227ece1377 |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
Ejemplares similares
-
Executive Order for a 10 Hour Day
Publicado: (2017) -
Forecasting of the first hour aftershocks by means of the perceived magnitude
por: E. Lippiello, et al.
Publicado: (2019) -
Energy Consumption Patterns and Load Forecasting with Profiled CNN-LSTM Networks
por: Kareem Al-Saudi, et al.
Publicado: (2021) -
Towards Electric Price and Load Forecasting Using CNN-Based Ensembler in Smart Grid
por: Shahzad Aslam, et al.
Publicado: (2021) -
Hourly Energy Consumption Forecasting for Office Buildings Based on Support Vector Machine
por: XIAO Ran, et al.
Publicado: (2021)