Three-dimensional imaging of Prox1-EGFP transgenic mouse gonads reveals divergent modes of lymphangiogenesis in the testis and ovary.
The lymphatic vasculature forms a specialized part of the circulatory system, being essential for maintaining tissue fluid homeostasis and for transport of hormones, macromolecules, and immune cells. Although lymphatic vessels are assumed to play an important role in most tissues, their morphogenesi...
Guardado en:
Autores principales: | , , , |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
Public Library of Science (PLoS)
2012
|
Materias: | |
Acceso en línea: | https://doaj.org/article/61a4a27dd7354812b76033e0e79064ff |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
id |
oai:doaj.org-article:61a4a27dd7354812b76033e0e79064ff |
---|---|
record_format |
dspace |
spelling |
oai:doaj.org-article:61a4a27dd7354812b76033e0e79064ff2021-11-18T08:04:06ZThree-dimensional imaging of Prox1-EGFP transgenic mouse gonads reveals divergent modes of lymphangiogenesis in the testis and ovary.1932-620310.1371/journal.pone.0052620https://doaj.org/article/61a4a27dd7354812b76033e0e79064ff2012-01-01T00:00:00Zhttps://www.ncbi.nlm.nih.gov/pmc/articles/pmid/23285114/?tool=EBIhttps://doaj.org/toc/1932-6203The lymphatic vasculature forms a specialized part of the circulatory system, being essential for maintaining tissue fluid homeostasis and for transport of hormones, macromolecules, and immune cells. Although lymphatic vessels are assumed to play an important role in most tissues, their morphogenesis and function in the gonads remains poorly understood. Here we have exploited a lymphatic-specific Prox1-EGFP reporter mouse model and optical projection tomography technology to characterize both the temporal and spatial development of the lymphatic vessel network in mouse testes and ovaries. We find that lymphangiogenesis in the testis is initiated during late gestation, but in contrast to other organs, lymphatic vessels remain confined to the testis cap and, unlike blood vessels, do not infiltrate the entire organ. Conversely, lymphatic vessels invade the ovarian tissue, beginning postnatally, and sprouting from preexisting lymphatic vessels at the extraovarian rete. The ovary develops a rich network of lymphatic vessels, extending from the medulla into the surrounding cortex adjacent to developing follicles. This study reveals distinct patterns of lymphangiogenesis in the testes and ovaries and will serve as the basis for the identification of the divergent molecular pathways that control morphogenesis and the function of the lymphatic vasculature in these two organs.Terje SvingenMathias FrançoisDagmar WilhelmPeter KoopmanPublic Library of Science (PLoS)articleMedicineRScienceQENPLoS ONE, Vol 7, Iss 12, p e52620 (2012) |
institution |
DOAJ |
collection |
DOAJ |
language |
EN |
topic |
Medicine R Science Q |
spellingShingle |
Medicine R Science Q Terje Svingen Mathias François Dagmar Wilhelm Peter Koopman Three-dimensional imaging of Prox1-EGFP transgenic mouse gonads reveals divergent modes of lymphangiogenesis in the testis and ovary. |
description |
The lymphatic vasculature forms a specialized part of the circulatory system, being essential for maintaining tissue fluid homeostasis and for transport of hormones, macromolecules, and immune cells. Although lymphatic vessels are assumed to play an important role in most tissues, their morphogenesis and function in the gonads remains poorly understood. Here we have exploited a lymphatic-specific Prox1-EGFP reporter mouse model and optical projection tomography technology to characterize both the temporal and spatial development of the lymphatic vessel network in mouse testes and ovaries. We find that lymphangiogenesis in the testis is initiated during late gestation, but in contrast to other organs, lymphatic vessels remain confined to the testis cap and, unlike blood vessels, do not infiltrate the entire organ. Conversely, lymphatic vessels invade the ovarian tissue, beginning postnatally, and sprouting from preexisting lymphatic vessels at the extraovarian rete. The ovary develops a rich network of lymphatic vessels, extending from the medulla into the surrounding cortex adjacent to developing follicles. This study reveals distinct patterns of lymphangiogenesis in the testes and ovaries and will serve as the basis for the identification of the divergent molecular pathways that control morphogenesis and the function of the lymphatic vasculature in these two organs. |
format |
article |
author |
Terje Svingen Mathias François Dagmar Wilhelm Peter Koopman |
author_facet |
Terje Svingen Mathias François Dagmar Wilhelm Peter Koopman |
author_sort |
Terje Svingen |
title |
Three-dimensional imaging of Prox1-EGFP transgenic mouse gonads reveals divergent modes of lymphangiogenesis in the testis and ovary. |
title_short |
Three-dimensional imaging of Prox1-EGFP transgenic mouse gonads reveals divergent modes of lymphangiogenesis in the testis and ovary. |
title_full |
Three-dimensional imaging of Prox1-EGFP transgenic mouse gonads reveals divergent modes of lymphangiogenesis in the testis and ovary. |
title_fullStr |
Three-dimensional imaging of Prox1-EGFP transgenic mouse gonads reveals divergent modes of lymphangiogenesis in the testis and ovary. |
title_full_unstemmed |
Three-dimensional imaging of Prox1-EGFP transgenic mouse gonads reveals divergent modes of lymphangiogenesis in the testis and ovary. |
title_sort |
three-dimensional imaging of prox1-egfp transgenic mouse gonads reveals divergent modes of lymphangiogenesis in the testis and ovary. |
publisher |
Public Library of Science (PLoS) |
publishDate |
2012 |
url |
https://doaj.org/article/61a4a27dd7354812b76033e0e79064ff |
work_keys_str_mv |
AT terjesvingen threedimensionalimagingofprox1egfptransgenicmousegonadsrevealsdivergentmodesoflymphangiogenesisinthetestisandovary AT mathiasfrancois threedimensionalimagingofprox1egfptransgenicmousegonadsrevealsdivergentmodesoflymphangiogenesisinthetestisandovary AT dagmarwilhelm threedimensionalimagingofprox1egfptransgenicmousegonadsrevealsdivergentmodesoflymphangiogenesisinthetestisandovary AT peterkoopman threedimensionalimagingofprox1egfptransgenicmousegonadsrevealsdivergentmodesoflymphangiogenesisinthetestisandovary |
_version_ |
1718422288343236608 |