Uncovering transcriptional dark matter via gene annotation independent single-cell RNA sequencing analysis
Conventional single-cell RNA sequencing analysis rely on genome annotations that may be incomplete or inaccurate especially for understudied organisms. Here the authors present a bioinformatic tool that leverages single-cell data to uncover biologically relevant transcripts beyond the best available...
Guardado en:
Autores principales: | , , , , , , , |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
Nature Portfolio
2021
|
Materias: | |
Acceso en línea: | https://doaj.org/article/61a7bc13e77e42f98fc57182ea58774c |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
Sumario: | Conventional single-cell RNA sequencing analysis rely on genome annotations that may be incomplete or inaccurate especially for understudied organisms. Here the authors present a bioinformatic tool that leverages single-cell data to uncover biologically relevant transcripts beyond the best available genome annotation. |
---|