Uncovering transcriptional dark matter via gene annotation independent single-cell RNA sequencing analysis
Conventional single-cell RNA sequencing analysis rely on genome annotations that may be incomplete or inaccurate especially for understudied organisms. Here the authors present a bioinformatic tool that leverages single-cell data to uncover biologically relevant transcripts beyond the best available...
Guardado en:
Autores principales: | Michael F. Z. Wang, Madhav Mantri, Shao-Pei Chou, Gaetano J. Scuderi, David W. McKellar, Jonathan T. Butcher, Charles G. Danko, Iwijn De Vlaminck |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
Nature Portfolio
2021
|
Materias: | |
Acceso en línea: | https://doaj.org/article/61a7bc13e77e42f98fc57182ea58774c |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
Ejemplares similares
-
Spatiotemporal single-cell RNA sequencing of developing chicken hearts identifies interplay between cellular differentiation and morphogenesis
por: Madhav Mantri, et al.
Publicado: (2021) -
Large-scale integration of single-cell transcriptomic data captures transitional progenitor states in mouse skeletal muscle regeneration
por: David W. McKellar, et al.
Publicado: (2021) -
Most "dark matter" transcripts are associated with known genes.
por: Harm van Bakel, et al.
Publicado: (2010) -
Supergravity with mimetic dark matter
por: Ali H. Chamseddine
Publicado: (2021) -
Asymmetric accidental composite dark matter
por: Salvatore Bottaro, et al.
Publicado: (2021)