Smartphone Handwritten Circuits Solver Using Augmented Reality and Capsule Deep Networks for Engineering Education
Resolving circuit diagrams is a regular part of learning for school and university students from engineering backgrounds. Simulating circuits is usually done manually by creating circuit diagrams on circuit tools, which is a time-consuming and tedious process. We propose an innovative method of simu...
Guardado en:
Autores principales: | , , , , |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
MDPI AG
2021
|
Materias: | |
Acceso en línea: | https://doaj.org/article/61e73291033e4424b7429bbd59e3d072 |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
id |
oai:doaj.org-article:61e73291033e4424b7429bbd59e3d072 |
---|---|
record_format |
dspace |
spelling |
oai:doaj.org-article:61e73291033e4424b7429bbd59e3d0722021-11-25T17:23:09ZSmartphone Handwritten Circuits Solver Using Augmented Reality and Capsule Deep Networks for Engineering Education10.3390/educsci111106612227-7102https://doaj.org/article/61e73291033e4424b7429bbd59e3d0722021-10-01T00:00:00Zhttps://www.mdpi.com/2227-7102/11/11/661https://doaj.org/toc/2227-7102Resolving circuit diagrams is a regular part of learning for school and university students from engineering backgrounds. Simulating circuits is usually done manually by creating circuit diagrams on circuit tools, which is a time-consuming and tedious process. We propose an innovative method of simulating circuits from hand-drawn diagrams using smartphones through an image recognition system. This method allows students to use their smartphones to capture images instead of creating circuit diagrams before simulation. Our contribution lies in building a circuit recognition system using a deep learning capsule networks algorithm. The developed system receives an image captured by a smartphone that undergoes preprocessing, region proposal, classification, and node detection to get a Netlist and exports it to a circuit simulator program for simulation. We aim to improve engineering education using smartphones by (1) achieving higher accuracy using less training data with capsule networks and (2) developing a comprehensive system that captures hand-drawn circuit diagrams and produces circuit simulation results. We use 400 samples per class and report an accuracy of 96% for stratified 5-fold cross-validation. Through testing, we identify the optimum distance for taking circuit images to be 10 to 20 cm. Our proposed model can identify components of different scales and rotations.Marah AlhalabiMohammed GhazalFasila HaneefaJawad YousafAyman El-BazMDPI AGarticlesmartphones and learningengineering educationcircuit diagramsaugmented realitycapsule networksdeep learningEducationLENEducation Sciences, Vol 11, Iss 661, p 661 (2021) |
institution |
DOAJ |
collection |
DOAJ |
language |
EN |
topic |
smartphones and learning engineering education circuit diagrams augmented reality capsule networks deep learning Education L |
spellingShingle |
smartphones and learning engineering education circuit diagrams augmented reality capsule networks deep learning Education L Marah Alhalabi Mohammed Ghazal Fasila Haneefa Jawad Yousaf Ayman El-Baz Smartphone Handwritten Circuits Solver Using Augmented Reality and Capsule Deep Networks for Engineering Education |
description |
Resolving circuit diagrams is a regular part of learning for school and university students from engineering backgrounds. Simulating circuits is usually done manually by creating circuit diagrams on circuit tools, which is a time-consuming and tedious process. We propose an innovative method of simulating circuits from hand-drawn diagrams using smartphones through an image recognition system. This method allows students to use their smartphones to capture images instead of creating circuit diagrams before simulation. Our contribution lies in building a circuit recognition system using a deep learning capsule networks algorithm. The developed system receives an image captured by a smartphone that undergoes preprocessing, region proposal, classification, and node detection to get a Netlist and exports it to a circuit simulator program for simulation. We aim to improve engineering education using smartphones by (1) achieving higher accuracy using less training data with capsule networks and (2) developing a comprehensive system that captures hand-drawn circuit diagrams and produces circuit simulation results. We use 400 samples per class and report an accuracy of 96% for stratified 5-fold cross-validation. Through testing, we identify the optimum distance for taking circuit images to be 10 to 20 cm. Our proposed model can identify components of different scales and rotations. |
format |
article |
author |
Marah Alhalabi Mohammed Ghazal Fasila Haneefa Jawad Yousaf Ayman El-Baz |
author_facet |
Marah Alhalabi Mohammed Ghazal Fasila Haneefa Jawad Yousaf Ayman El-Baz |
author_sort |
Marah Alhalabi |
title |
Smartphone Handwritten Circuits Solver Using Augmented Reality and Capsule Deep Networks for Engineering Education |
title_short |
Smartphone Handwritten Circuits Solver Using Augmented Reality and Capsule Deep Networks for Engineering Education |
title_full |
Smartphone Handwritten Circuits Solver Using Augmented Reality and Capsule Deep Networks for Engineering Education |
title_fullStr |
Smartphone Handwritten Circuits Solver Using Augmented Reality and Capsule Deep Networks for Engineering Education |
title_full_unstemmed |
Smartphone Handwritten Circuits Solver Using Augmented Reality and Capsule Deep Networks for Engineering Education |
title_sort |
smartphone handwritten circuits solver using augmented reality and capsule deep networks for engineering education |
publisher |
MDPI AG |
publishDate |
2021 |
url |
https://doaj.org/article/61e73291033e4424b7429bbd59e3d072 |
work_keys_str_mv |
AT marahalhalabi smartphonehandwrittencircuitssolverusingaugmentedrealityandcapsuledeepnetworksforengineeringeducation AT mohammedghazal smartphonehandwrittencircuitssolverusingaugmentedrealityandcapsuledeepnetworksforengineeringeducation AT fasilahaneefa smartphonehandwrittencircuitssolverusingaugmentedrealityandcapsuledeepnetworksforengineeringeducation AT jawadyousaf smartphonehandwrittencircuitssolverusingaugmentedrealityandcapsuledeepnetworksforengineeringeducation AT aymanelbaz smartphonehandwrittencircuitssolverusingaugmentedrealityandcapsuledeepnetworksforengineeringeducation |
_version_ |
1718412410482589696 |