Auto-encoding NMR chemical shifts from their native vector space to a residue-level biophysical index
NMR chemical shift information is highly valuable in the investigation of small molecule and protein structure. Here, the authors developed a neural network approach to unify protein chemical shifts and their changes in response to changes in protein sequence, structure, and dimerization interaction...
Guardado en:
Autores principales: | Gabriele Orlando, Daniele Raimondi, Wim F. Vranken |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
Nature Portfolio
2019
|
Materias: | |
Acceso en línea: | https://doaj.org/article/61e9c1f7f5bf4e32be70987487f4bd26 |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
Ejemplares similares
-
Exploring the Sequence-based Prediction of Folding Initiation Sites in Proteins
por: Daniele Raimondi, et al.
Publicado: (2017) -
Auto-FPFA: An Automated Microscope for Characterizing Genetically Encoded Biosensors
por: Tuan A. Nguyen, et al.
Publicado: (2018) - Biophysics
-
Nonlinear detection of secondary isotopic chemical shifts in NMR through spin noise
por: Maria Theresia Pöschko, et al.
Publicado: (2017) -
THE SOCIAL PROTEST «WITH CHINESE PARTICULARITY»: THE SHIFTING VECTOR
por: V. A. Korsun
Publicado: (2015)