Cumulative learning enables convolutional neural network representations for small mass spectrometry data classification

Convolutional Neural Networks are powerful tools for clinical diagnosis but their effectiveness decreases when the number of available samples is small. Here, the authors develop a cumulative learning method by training the same model through several classification tasks over various small Mass Spec...

Descripción completa

Guardado en:
Detalles Bibliográficos
Autores principales: Khawla Seddiki, Philippe Saudemont, Frédéric Precioso, Nina Ogrinc, Maxence Wisztorski, Michel Salzet, Isabelle Fournier, Arnaud Droit
Formato: article
Lenguaje:EN
Publicado: Nature Portfolio 2020
Materias:
Q
Acceso en línea:https://doaj.org/article/61ed017906cc4495a8c8bb0823495394
Etiquetas: Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
id oai:doaj.org-article:61ed017906cc4495a8c8bb0823495394
record_format dspace
spelling oai:doaj.org-article:61ed017906cc4495a8c8bb08234953942021-12-02T15:39:22ZCumulative learning enables convolutional neural network representations for small mass spectrometry data classification10.1038/s41467-020-19354-z2041-1723https://doaj.org/article/61ed017906cc4495a8c8bb08234953942020-11-01T00:00:00Zhttps://doi.org/10.1038/s41467-020-19354-zhttps://doaj.org/toc/2041-1723Convolutional Neural Networks are powerful tools for clinical diagnosis but their effectiveness decreases when the number of available samples is small. Here, the authors develop a cumulative learning method by training the same model through several classification tasks over various small Mass Spectrometry datasets.Khawla SeddikiPhilippe SaudemontFrédéric PreciosoNina OgrincMaxence WisztorskiMichel SalzetIsabelle FournierArnaud DroitNature PortfolioarticleScienceQENNature Communications, Vol 11, Iss 1, Pp 1-11 (2020)
institution DOAJ
collection DOAJ
language EN
topic Science
Q
spellingShingle Science
Q
Khawla Seddiki
Philippe Saudemont
Frédéric Precioso
Nina Ogrinc
Maxence Wisztorski
Michel Salzet
Isabelle Fournier
Arnaud Droit
Cumulative learning enables convolutional neural network representations for small mass spectrometry data classification
description Convolutional Neural Networks are powerful tools for clinical diagnosis but their effectiveness decreases when the number of available samples is small. Here, the authors develop a cumulative learning method by training the same model through several classification tasks over various small Mass Spectrometry datasets.
format article
author Khawla Seddiki
Philippe Saudemont
Frédéric Precioso
Nina Ogrinc
Maxence Wisztorski
Michel Salzet
Isabelle Fournier
Arnaud Droit
author_facet Khawla Seddiki
Philippe Saudemont
Frédéric Precioso
Nina Ogrinc
Maxence Wisztorski
Michel Salzet
Isabelle Fournier
Arnaud Droit
author_sort Khawla Seddiki
title Cumulative learning enables convolutional neural network representations for small mass spectrometry data classification
title_short Cumulative learning enables convolutional neural network representations for small mass spectrometry data classification
title_full Cumulative learning enables convolutional neural network representations for small mass spectrometry data classification
title_fullStr Cumulative learning enables convolutional neural network representations for small mass spectrometry data classification
title_full_unstemmed Cumulative learning enables convolutional neural network representations for small mass spectrometry data classification
title_sort cumulative learning enables convolutional neural network representations for small mass spectrometry data classification
publisher Nature Portfolio
publishDate 2020
url https://doaj.org/article/61ed017906cc4495a8c8bb0823495394
work_keys_str_mv AT khawlaseddiki cumulativelearningenablesconvolutionalneuralnetworkrepresentationsforsmallmassspectrometrydataclassification
AT philippesaudemont cumulativelearningenablesconvolutionalneuralnetworkrepresentationsforsmallmassspectrometrydataclassification
AT fredericprecioso cumulativelearningenablesconvolutionalneuralnetworkrepresentationsforsmallmassspectrometrydataclassification
AT ninaogrinc cumulativelearningenablesconvolutionalneuralnetworkrepresentationsforsmallmassspectrometrydataclassification
AT maxencewisztorski cumulativelearningenablesconvolutionalneuralnetworkrepresentationsforsmallmassspectrometrydataclassification
AT michelsalzet cumulativelearningenablesconvolutionalneuralnetworkrepresentationsforsmallmassspectrometrydataclassification
AT isabellefournier cumulativelearningenablesconvolutionalneuralnetworkrepresentationsforsmallmassspectrometrydataclassification
AT arnauddroit cumulativelearningenablesconvolutionalneuralnetworkrepresentationsforsmallmassspectrometrydataclassification
_version_ 1718385934253162496