Cumulative learning enables convolutional neural network representations for small mass spectrometry data classification
Convolutional Neural Networks are powerful tools for clinical diagnosis but their effectiveness decreases when the number of available samples is small. Here, the authors develop a cumulative learning method by training the same model through several classification tasks over various small Mass Spec...
Guardado en:
Autores principales: | Khawla Seddiki, Philippe Saudemont, Frédéric Precioso, Nina Ogrinc, Maxence Wisztorski, Michel Salzet, Isabelle Fournier, Arnaud Droit |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
Nature Portfolio
2020
|
Materias: | |
Acceso en línea: | https://doaj.org/article/61ed017906cc4495a8c8bb0823495394 |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
Ejemplares similares
-
A new safety concern for glaucoma treatment demonstrated by mass spectrometry imaging of benzalkonium chloride distribution in the eye, an experimental study in rabbits.
por: Françoise Brignole-Baudouin, et al.
Publicado: (2012) -
Representation of features as images with neighborhood dependencies for compatibility with convolutional neural networks
por: Omid Bazgir, et al.
Publicado: (2020) -
On the State Approach Representations of Convolutional Codes over Rings of Modular Integers
por: Ángel Luis Muñoz Castañeda, et al.
Publicado: (2021) -
Molecular representation of coal-derived asphaltene based on high resolution mass spectrometry
por: Yonghong Zhu, et al.
Publicado: (2022) -
Limits to visual representational correspondence between convolutional neural networks and the human brain
por: Yaoda Xu, et al.
Publicado: (2021)