Cumulative learning enables convolutional neural network representations for small mass spectrometry data classification
Convolutional Neural Networks are powerful tools for clinical diagnosis but their effectiveness decreases when the number of available samples is small. Here, the authors develop a cumulative learning method by training the same model through several classification tasks over various small Mass Spec...
Enregistré dans:
| Auteurs principaux: | Khawla Seddiki, Philippe Saudemont, Frédéric Precioso, Nina Ogrinc, Maxence Wisztorski, Michel Salzet, Isabelle Fournier, Arnaud Droit |
|---|---|
| Format: | article |
| Langue: | EN |
| Publié: |
Nature Portfolio
2020
|
| Sujets: | |
| Accès en ligne: | https://doaj.org/article/61ed017906cc4495a8c8bb0823495394 |
| Tags: |
Ajouter un tag
Pas de tags, Soyez le premier à ajouter un tag!
|
Documents similaires
-
A new safety concern for glaucoma treatment demonstrated by mass spectrometry imaging of benzalkonium chloride distribution in the eye, an experimental study in rabbits.
par: Françoise Brignole-Baudouin, et autres
Publié: (2012) -
Representation of features as images with neighborhood dependencies for compatibility with convolutional neural networks
par: Omid Bazgir, et autres
Publié: (2020) -
On the State Approach Representations of Convolutional Codes over Rings of Modular Integers
par: Ángel Luis Muñoz Castañeda, et autres
Publié: (2021) -
Molecular representation of coal-derived asphaltene based on high resolution mass spectrometry
par: Yonghong Zhu, et autres
Publié: (2022) -
Limits to visual representational correspondence between convolutional neural networks and the human brain
par: Yaoda Xu, et autres
Publié: (2021)