Machine learning in chemical reaction space

Application of machine-learning approaches to exploring chemical reaction networks is challenging due to need of including open-shell reaction intermediates. Here the authors introduce a density functional theory database of closed and open-shell molecules for machine-learning predictions of reactio...

Descripción completa

Guardado en:
Detalles Bibliográficos
Autores principales: Sina Stocker, Gábor Csányi, Karsten Reuter, Johannes T. Margraf
Formato: article
Lenguaje:EN
Publicado: Nature Portfolio 2020
Materias:
Q
Acceso en línea:https://doaj.org/article/61fa2a4df63746c2accee2753ea074c2
Etiquetas: Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
Descripción
Sumario:Application of machine-learning approaches to exploring chemical reaction networks is challenging due to need of including open-shell reaction intermediates. Here the authors introduce a density functional theory database of closed and open-shell molecules for machine-learning predictions of reaction energies.