Machine learning in chemical reaction space

Application of machine-learning approaches to exploring chemical reaction networks is challenging due to need of including open-shell reaction intermediates. Here the authors introduce a density functional theory database of closed and open-shell molecules for machine-learning predictions of reactio...

Descripción completa

Guardado en:
Detalles Bibliográficos
Autores principales: Sina Stocker, Gábor Csányi, Karsten Reuter, Johannes T. Margraf
Formato: article
Lenguaje:EN
Publicado: Nature Portfolio 2020
Materias:
Q
Acceso en línea:https://doaj.org/article/61fa2a4df63746c2accee2753ea074c2
Etiquetas: Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
id oai:doaj.org-article:61fa2a4df63746c2accee2753ea074c2
record_format dspace
spelling oai:doaj.org-article:61fa2a4df63746c2accee2753ea074c22021-12-02T15:39:16ZMachine learning in chemical reaction space10.1038/s41467-020-19267-x2041-1723https://doaj.org/article/61fa2a4df63746c2accee2753ea074c22020-10-01T00:00:00Zhttps://doi.org/10.1038/s41467-020-19267-xhttps://doaj.org/toc/2041-1723Application of machine-learning approaches to exploring chemical reaction networks is challenging due to need of including open-shell reaction intermediates. Here the authors introduce a density functional theory database of closed and open-shell molecules for machine-learning predictions of reaction energies.Sina StockerGábor CsányiKarsten ReuterJohannes T. MargrafNature PortfolioarticleScienceQENNature Communications, Vol 11, Iss 1, Pp 1-11 (2020)
institution DOAJ
collection DOAJ
language EN
topic Science
Q
spellingShingle Science
Q
Sina Stocker
Gábor Csányi
Karsten Reuter
Johannes T. Margraf
Machine learning in chemical reaction space
description Application of machine-learning approaches to exploring chemical reaction networks is challenging due to need of including open-shell reaction intermediates. Here the authors introduce a density functional theory database of closed and open-shell molecules for machine-learning predictions of reaction energies.
format article
author Sina Stocker
Gábor Csányi
Karsten Reuter
Johannes T. Margraf
author_facet Sina Stocker
Gábor Csányi
Karsten Reuter
Johannes T. Margraf
author_sort Sina Stocker
title Machine learning in chemical reaction space
title_short Machine learning in chemical reaction space
title_full Machine learning in chemical reaction space
title_fullStr Machine learning in chemical reaction space
title_full_unstemmed Machine learning in chemical reaction space
title_sort machine learning in chemical reaction space
publisher Nature Portfolio
publishDate 2020
url https://doaj.org/article/61fa2a4df63746c2accee2753ea074c2
work_keys_str_mv AT sinastocker machinelearninginchemicalreactionspace
AT gaborcsanyi machinelearninginchemicalreactionspace
AT karstenreuter machinelearninginchemicalreactionspace
AT johannestmargraf machinelearninginchemicalreactionspace
_version_ 1718385934455537664