Machine learning in chemical reaction space
Application of machine-learning approaches to exploring chemical reaction networks is challenging due to need of including open-shell reaction intermediates. Here the authors introduce a density functional theory database of closed and open-shell molecules for machine-learning predictions of reactio...
Guardado en:
Autores principales: | , , , |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
Nature Portfolio
2020
|
Materias: | |
Acceso en línea: | https://doaj.org/article/61fa2a4df63746c2accee2753ea074c2 |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
id |
oai:doaj.org-article:61fa2a4df63746c2accee2753ea074c2 |
---|---|
record_format |
dspace |
spelling |
oai:doaj.org-article:61fa2a4df63746c2accee2753ea074c22021-12-02T15:39:16ZMachine learning in chemical reaction space10.1038/s41467-020-19267-x2041-1723https://doaj.org/article/61fa2a4df63746c2accee2753ea074c22020-10-01T00:00:00Zhttps://doi.org/10.1038/s41467-020-19267-xhttps://doaj.org/toc/2041-1723Application of machine-learning approaches to exploring chemical reaction networks is challenging due to need of including open-shell reaction intermediates. Here the authors introduce a density functional theory database of closed and open-shell molecules for machine-learning predictions of reaction energies.Sina StockerGábor CsányiKarsten ReuterJohannes T. MargrafNature PortfolioarticleScienceQENNature Communications, Vol 11, Iss 1, Pp 1-11 (2020) |
institution |
DOAJ |
collection |
DOAJ |
language |
EN |
topic |
Science Q |
spellingShingle |
Science Q Sina Stocker Gábor Csányi Karsten Reuter Johannes T. Margraf Machine learning in chemical reaction space |
description |
Application of machine-learning approaches to exploring chemical reaction networks is challenging due to need of including open-shell reaction intermediates. Here the authors introduce a density functional theory database of closed and open-shell molecules for machine-learning predictions of reaction energies. |
format |
article |
author |
Sina Stocker Gábor Csányi Karsten Reuter Johannes T. Margraf |
author_facet |
Sina Stocker Gábor Csányi Karsten Reuter Johannes T. Margraf |
author_sort |
Sina Stocker |
title |
Machine learning in chemical reaction space |
title_short |
Machine learning in chemical reaction space |
title_full |
Machine learning in chemical reaction space |
title_fullStr |
Machine learning in chemical reaction space |
title_full_unstemmed |
Machine learning in chemical reaction space |
title_sort |
machine learning in chemical reaction space |
publisher |
Nature Portfolio |
publishDate |
2020 |
url |
https://doaj.org/article/61fa2a4df63746c2accee2753ea074c2 |
work_keys_str_mv |
AT sinastocker machinelearninginchemicalreactionspace AT gaborcsanyi machinelearninginchemicalreactionspace AT karstenreuter machinelearninginchemicalreactionspace AT johannestmargraf machinelearninginchemicalreactionspace |
_version_ |
1718385934455537664 |