Machine learning in chemical reaction space
Application of machine-learning approaches to exploring chemical reaction networks is challenging due to need of including open-shell reaction intermediates. Here the authors introduce a density functional theory database of closed and open-shell molecules for machine-learning predictions of reactio...
Guardado en:
Autores principales: | Sina Stocker, Gábor Csányi, Karsten Reuter, Johannes T. Margraf |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
Nature Portfolio
2020
|
Materias: | |
Acceso en línea: | https://doaj.org/article/61fa2a4df63746c2accee2753ea074c2 |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
Ejemplares similares
-
Pure non-local machine-learned density functional theory for electron correlation
por: Johannes T. Margraf, et al.
Publicado: (2021) -
Comprehensive machine learning based study of the chemical space of herbicides
por: Davor Oršolić, et al.
Publicado: (2021) -
A general-purpose machine-learning force field for bulk and nanostructured phosphorus
por: Volker L. Deringer, et al.
Publicado: (2020) -
Quantitative interpretation explains machine learning models for chemical reaction prediction and uncovers bias
por: Dávid Péter Kovács, et al.
Publicado: (2021) -
Exploring the chemical space of protein–protein interaction inhibitors through machine learning
por: Jiwon Choi, et al.
Publicado: (2021)