Enhanced laser-driven proton acceleration using nanowire targets

Abstract Laser-driven proton acceleration is a growing field of interest in the high-power laser community. One of the big challenges related to the most routinely used laser-driven ion acceleration mechanism, Target-Normal Sheath Acceleration (TNSA), is to enhance the laser-to-proton energy transfe...

Descripción completa

Guardado en:
Detalles Bibliográficos
Autores principales: S. Vallières, M. Salvadori, A. Permogorov, G. Cantono, K. Svendsen, Z. Chen, S. Sun, F. Consoli, E. d’Humières, C.-G. Wahlström, P. Antici
Formato: article
Lenguaje:EN
Publicado: Nature Portfolio 2021
Materias:
R
Q
Acceso en línea:https://doaj.org/article/620542ac9cbd4d1a82cb1cdcfe085402
Etiquetas: Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
id oai:doaj.org-article:620542ac9cbd4d1a82cb1cdcfe085402
record_format dspace
spelling oai:doaj.org-article:620542ac9cbd4d1a82cb1cdcfe0854022021-12-02T14:16:33ZEnhanced laser-driven proton acceleration using nanowire targets10.1038/s41598-020-80392-02045-2322https://doaj.org/article/620542ac9cbd4d1a82cb1cdcfe0854022021-01-01T00:00:00Zhttps://doi.org/10.1038/s41598-020-80392-0https://doaj.org/toc/2045-2322Abstract Laser-driven proton acceleration is a growing field of interest in the high-power laser community. One of the big challenges related to the most routinely used laser-driven ion acceleration mechanism, Target-Normal Sheath Acceleration (TNSA), is to enhance the laser-to-proton energy transfer such as to maximize the proton kinetic energy and number. A way to achieve this is using nanostructured target surfaces in the laser-matter interaction. In this paper, we show that nanowire structures can increase the maximum proton energy by a factor of two, triple the proton temperature and boost the proton numbers, in a campaign performed on the ultra-high contrast 10 TW laser at the Lund Laser Center (LLC). The optimal nanowire length, generating maximum proton energies around 6 MeV, is around 1–2  $$\upmu$$ μ m. This nanowire length is sufficient to form well-defined highly-absorptive NW forests and short enough to minimize the energy loss of hot electrons going through the target bulk. Results are further supported by Particle-In-Cell simulations. Systematically analyzing nanowire length, diameter and gap size, we examine the underlying physical mechanisms that are provoking the enhancement of the longitudinal accelerating electric field. The parameter scan analysis shows that optimizing the spatial gap between the nanowires leads to larger enhancement than by the nanowire diameter and length, through increased electron heating.S. VallièresM. SalvadoriA. PermogorovG. CantonoK. SvendsenZ. ChenS. SunF. ConsoliE. d’HumièresC.-G. WahlströmP. AnticiNature PortfolioarticleMedicineRScienceQENScientific Reports, Vol 11, Iss 1, Pp 1-11 (2021)
institution DOAJ
collection DOAJ
language EN
topic Medicine
R
Science
Q
spellingShingle Medicine
R
Science
Q
S. Vallières
M. Salvadori
A. Permogorov
G. Cantono
K. Svendsen
Z. Chen
S. Sun
F. Consoli
E. d’Humières
C.-G. Wahlström
P. Antici
Enhanced laser-driven proton acceleration using nanowire targets
description Abstract Laser-driven proton acceleration is a growing field of interest in the high-power laser community. One of the big challenges related to the most routinely used laser-driven ion acceleration mechanism, Target-Normal Sheath Acceleration (TNSA), is to enhance the laser-to-proton energy transfer such as to maximize the proton kinetic energy and number. A way to achieve this is using nanostructured target surfaces in the laser-matter interaction. In this paper, we show that nanowire structures can increase the maximum proton energy by a factor of two, triple the proton temperature and boost the proton numbers, in a campaign performed on the ultra-high contrast 10 TW laser at the Lund Laser Center (LLC). The optimal nanowire length, generating maximum proton energies around 6 MeV, is around 1–2  $$\upmu$$ μ m. This nanowire length is sufficient to form well-defined highly-absorptive NW forests and short enough to minimize the energy loss of hot electrons going through the target bulk. Results are further supported by Particle-In-Cell simulations. Systematically analyzing nanowire length, diameter and gap size, we examine the underlying physical mechanisms that are provoking the enhancement of the longitudinal accelerating electric field. The parameter scan analysis shows that optimizing the spatial gap between the nanowires leads to larger enhancement than by the nanowire diameter and length, through increased electron heating.
format article
author S. Vallières
M. Salvadori
A. Permogorov
G. Cantono
K. Svendsen
Z. Chen
S. Sun
F. Consoli
E. d’Humières
C.-G. Wahlström
P. Antici
author_facet S. Vallières
M. Salvadori
A. Permogorov
G. Cantono
K. Svendsen
Z. Chen
S. Sun
F. Consoli
E. d’Humières
C.-G. Wahlström
P. Antici
author_sort S. Vallières
title Enhanced laser-driven proton acceleration using nanowire targets
title_short Enhanced laser-driven proton acceleration using nanowire targets
title_full Enhanced laser-driven proton acceleration using nanowire targets
title_fullStr Enhanced laser-driven proton acceleration using nanowire targets
title_full_unstemmed Enhanced laser-driven proton acceleration using nanowire targets
title_sort enhanced laser-driven proton acceleration using nanowire targets
publisher Nature Portfolio
publishDate 2021
url https://doaj.org/article/620542ac9cbd4d1a82cb1cdcfe085402
work_keys_str_mv AT svallieres enhancedlaserdrivenprotonaccelerationusingnanowiretargets
AT msalvadori enhancedlaserdrivenprotonaccelerationusingnanowiretargets
AT apermogorov enhancedlaserdrivenprotonaccelerationusingnanowiretargets
AT gcantono enhancedlaserdrivenprotonaccelerationusingnanowiretargets
AT ksvendsen enhancedlaserdrivenprotonaccelerationusingnanowiretargets
AT zchen enhancedlaserdrivenprotonaccelerationusingnanowiretargets
AT ssun enhancedlaserdrivenprotonaccelerationusingnanowiretargets
AT fconsoli enhancedlaserdrivenprotonaccelerationusingnanowiretargets
AT edhumieres enhancedlaserdrivenprotonaccelerationusingnanowiretargets
AT cgwahlstrom enhancedlaserdrivenprotonaccelerationusingnanowiretargets
AT pantici enhancedlaserdrivenprotonaccelerationusingnanowiretargets
_version_ 1718391668897480704