Milling Tool Wear Prediction Method Based on Deep Learning Under Variable Working Conditions
Tool wear prediction is essential to ensure part quality and machining efficiency. Tool wear is affected by factors such as the material, structure, process, and processing time of the parts. Tool wear under the variable working conditions and the above factors show a complex coupling and timing cor...
Guardado en:
Autores principales: | Mingwei Wang, Jingtao Zhou, Jing Gao, Ziqiu Li, Enming Li |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
IEEE
2020
|
Materias: | |
Acceso en línea: | https://doaj.org/article/620c6b92ee5146e18691fe0ee1546192 |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
Ejemplares similares
-
Bayesian Deep Neural Network to Compensate for Current Transformer Saturation
por: Sopheap Key, et al.
Publicado: (2021) -
Short-term regional wind power forecasting for small datasets with input data correction, hybrid neural network, and error analysis
por: Weichao Dong, et al.
Publicado: (2021) -
Performance Analysis of Long Short-Term Memory-Based Markovian Spectrum Prediction
por: Niranjana Radhakrishnan, et al.
Publicado: (2021) -
Aircraft Gearbox Fault Diagnosis System: An Approach based on Deep Learning Techniques
por: Mallikarjuna P B, et al.
Publicado: (2020) -
Performance Analysis of LSTMs for Daily Individual EV Charging Behavior Prediction
por: Ahmed S. Khwaja, et al.
Publicado: (2021)