Multi-time scale co-integration forecast of annual runoff in the source area of the Yellow River
In order to reveal the multi-time scale of rainfall, runoff and sediment in the source area of the Yellow River and improve the accuracy of annual runoff forecast, the Complete Ensemble Empirical Mode Decomposition with Adaptive Noise (CEEMDAN) method is introduced to decompose the measured rainfall...
Guardado en:
Autores principales: | Jinping Zhang, Hongbin Li, Bin Sun, Hongyuan Fang |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
IWA Publishing
2021
|
Materias: | |
Acceso en línea: | https://doaj.org/article/620ec27bcd8049fc96774104f42acaf5 |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
Ejemplares similares
-
Determination of variation uncertainty in runoff time series at multi-temporal scales
por: Yan Ye, et al.
Publicado: (2021) -
Prediction of runoff in the upper Yangtze River based on CEEMDAN-NAR model
por: Xianqi Zhang, et al.
Publicado: (2021) -
Pollutant first flush identification and its implications for urban runoff pollution control: a roof and road runoff case study in Beijing, China
por: Wei Zhang, et al.
Publicado: (2021) -
Trend and change points of streamflow in the Yellow River and their attributions
por: Dunyu Zhong, et al.
Publicado: (2021) -
The variation and attribution analysis of the runoff and sediment in the lower reach of the Yellow River during the past 60 years
por: Hongxiang Wang, et al.
Publicado: (2021)