Vector Auto-Regressive Deep Neural Network: A Data-Driven Deep Learning-Based Directed Functional Connectivity Estimation Toolbox
An important goal in neuroscience is to elucidate the causal relationships between the brain’s different regions. This can help reveal the brain’s functional circuitry and diagnose lesions. Currently there are a lack of approaches to functional connectome estimation that leverage the state-of-the-ar...
Guardado en:
Autores principales: | Takuto Okuno, Alexander Woodward |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
Frontiers Media S.A.
2021
|
Materias: | |
Acceso en línea: | https://doaj.org/article/621b9159783047f0b3eac840900bd4e4 |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
Ejemplares similares
-
Cox Regression Based Modeling of Functional Connectivity and Treatment Outcome for Relapse Prediction and Disease Subtyping in Substance Use Disorder
por: Tianye Zhai, et al.
Publicado: (2021) -
Alternation in Effective Connectivity With Cognitive Aging: A Longitudinal Study of Elderly Populations
por: Xingxing Cao, et al.
Publicado: (2021) -
Spillover effects of the US economic policy uncertainty in Latin America
por: Coronado,Semei, et al.
Publicado: (2020) -
A review of the Granger-causality fallacy
por: Mariusz Maziarz
Publicado: (2015) -
The Directionality of Fronto-Posterior Brain Connectivity Is Associated with the Degree of Individual Autistic Traits
por: Luca Tarasi, et al.
Publicado: (2021)