Interpretable and parameter optimized ensemble model for knee osteoarthritis assessment using radiographs
Abstract Knee osteoarthritis (KOA) is an orthopedic disorder with a substantial impact on mobility and quality of life. An accurate assessment of the KOA levels is imperative in prioritizing meaningful patient care. Quantifying osteoarthritis features such as osteophytes and joint space narrowing (J...
Guardado en:
Autores principales: | , |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
Nature Portfolio
2021
|
Materias: | |
Acceso en línea: | https://doaj.org/article/623b1906f80649a68c2659768a7aa29e |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
id |
oai:doaj.org-article:623b1906f80649a68c2659768a7aa29e |
---|---|
record_format |
dspace |
spelling |
oai:doaj.org-article:623b1906f80649a68c2659768a7aa29e2021-12-02T16:08:07ZInterpretable and parameter optimized ensemble model for knee osteoarthritis assessment using radiographs10.1038/s41598-021-93851-z2045-2322https://doaj.org/article/623b1906f80649a68c2659768a7aa29e2021-07-01T00:00:00Zhttps://doi.org/10.1038/s41598-021-93851-zhttps://doaj.org/toc/2045-2322Abstract Knee osteoarthritis (KOA) is an orthopedic disorder with a substantial impact on mobility and quality of life. An accurate assessment of the KOA levels is imperative in prioritizing meaningful patient care. Quantifying osteoarthritis features such as osteophytes and joint space narrowing (JSN) from low-resolution images (i.e., X-ray images) are mostly subjective. We implement an objective assessment and quantification of KOA to aid practitioners. In particular, we developed an interpretable ensemble of convolutional neural network (CNN) models consisting of three modules. First, we developed a scale-invariant and aspect ratio preserving model to localize Knee joints. Second, we created multiple instances of "hyperparameter optimized" CNN models with diversity and build an ensemble scoring system to assess the severity of KOA according to the Kellgren–Lawrence grading (KL) scale. Third, we provided visual explanations of the predictions by the ensemble model. We tested our models using a collection of 37,996 Knee joints from the Osteoarthritis Initiative (OAI) dataset. Our results show a superior (13–27%) performance improvement compared to the state-of-the-art methods.Mohammed Bany MuhammadMohammed YeasinNature PortfolioarticleMedicineRScienceQENScientific Reports, Vol 11, Iss 1, Pp 1-11 (2021) |
institution |
DOAJ |
collection |
DOAJ |
language |
EN |
topic |
Medicine R Science Q |
spellingShingle |
Medicine R Science Q Mohammed Bany Muhammad Mohammed Yeasin Interpretable and parameter optimized ensemble model for knee osteoarthritis assessment using radiographs |
description |
Abstract Knee osteoarthritis (KOA) is an orthopedic disorder with a substantial impact on mobility and quality of life. An accurate assessment of the KOA levels is imperative in prioritizing meaningful patient care. Quantifying osteoarthritis features such as osteophytes and joint space narrowing (JSN) from low-resolution images (i.e., X-ray images) are mostly subjective. We implement an objective assessment and quantification of KOA to aid practitioners. In particular, we developed an interpretable ensemble of convolutional neural network (CNN) models consisting of three modules. First, we developed a scale-invariant and aspect ratio preserving model to localize Knee joints. Second, we created multiple instances of "hyperparameter optimized" CNN models with diversity and build an ensemble scoring system to assess the severity of KOA according to the Kellgren–Lawrence grading (KL) scale. Third, we provided visual explanations of the predictions by the ensemble model. We tested our models using a collection of 37,996 Knee joints from the Osteoarthritis Initiative (OAI) dataset. Our results show a superior (13–27%) performance improvement compared to the state-of-the-art methods. |
format |
article |
author |
Mohammed Bany Muhammad Mohammed Yeasin |
author_facet |
Mohammed Bany Muhammad Mohammed Yeasin |
author_sort |
Mohammed Bany Muhammad |
title |
Interpretable and parameter optimized ensemble model for knee osteoarthritis assessment using radiographs |
title_short |
Interpretable and parameter optimized ensemble model for knee osteoarthritis assessment using radiographs |
title_full |
Interpretable and parameter optimized ensemble model for knee osteoarthritis assessment using radiographs |
title_fullStr |
Interpretable and parameter optimized ensemble model for knee osteoarthritis assessment using radiographs |
title_full_unstemmed |
Interpretable and parameter optimized ensemble model for knee osteoarthritis assessment using radiographs |
title_sort |
interpretable and parameter optimized ensemble model for knee osteoarthritis assessment using radiographs |
publisher |
Nature Portfolio |
publishDate |
2021 |
url |
https://doaj.org/article/623b1906f80649a68c2659768a7aa29e |
work_keys_str_mv |
AT mohammedbanymuhammad interpretableandparameteroptimizedensemblemodelforkneeosteoarthritisassessmentusingradiographs AT mohammedyeasin interpretableandparameteroptimizedensemblemodelforkneeosteoarthritisassessmentusingradiographs |
_version_ |
1718384599263870976 |