Area under the expiratory flow-volume curve: predicted values by artificial neural networks
Abstract Area under expiratory flow-volume curve (AEX) has been proposed recently to be a useful spirometric tool for assessing ventilatory patterns and impairment severity. We derive here normative reference values for AEX, based on age, gender, race, height and weight, and by using artificial neur...
Guardado en:
Autores principales: | Octavian C. Ioachimescu, James K. Stoller, Francisco Garcia-Rio |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
Nature Portfolio
2020
|
Materias: | |
Acceso en línea: | https://doaj.org/article/623f35e21f044b13a7a349d9d4de0e95 |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
Ejemplares similares
-
Raised-Volume Forced Expiratory Flow-Volume Curve in Healthy Taiwanese Infants
por: Shen-Hao Lai, et al.
Publicado: (2017) -
Prognostic Value of Preoperative Peak Expiratory Flow to Predict Postoperative Pulmonary Complications in Surgical Lung Cancer Patients
por: Shuai Chang, et al.
Publicado: (2021) -
Prediction of lateral surface, volume and sphericity of pomegranate using MLP artificial neural network
por: A Rohani, et al.
Publicado: (2015) -
Predictive analysis of the value of information flow on the shop floor of developing countries using artificial neural network based deep learning
por: André Marie Mbakop, et al.
Publicado: (2021) -
Effect of PEEP and tidal volume on ventilation distribution and end-expiratory lung volume: a prospective experimental animal and pilot clinical study.
por: Günther Zick, et al.
Publicado: (2013)