Area under the expiratory flow-volume curve: predicted values by artificial neural networks
Abstract Area under expiratory flow-volume curve (AEX) has been proposed recently to be a useful spirometric tool for assessing ventilatory patterns and impairment severity. We derive here normative reference values for AEX, based on age, gender, race, height and weight, and by using artificial neur...
Enregistré dans:
Auteurs principaux: | Octavian C. Ioachimescu, James K. Stoller, Francisco Garcia-Rio |
---|---|
Format: | article |
Langue: | EN |
Publié: |
Nature Portfolio
2020
|
Sujets: | |
Accès en ligne: | https://doaj.org/article/623f35e21f044b13a7a349d9d4de0e95 |
Tags: |
Ajouter un tag
Pas de tags, Soyez le premier à ajouter un tag!
|
Documents similaires
-
Raised-Volume Forced Expiratory Flow-Volume Curve in Healthy Taiwanese Infants
par: Shen-Hao Lai, et autres
Publié: (2017) -
Prognostic Value of Preoperative Peak Expiratory Flow to Predict Postoperative Pulmonary Complications in Surgical Lung Cancer Patients
par: Shuai Chang, et autres
Publié: (2021) -
Prediction of lateral surface, volume and sphericity of pomegranate using MLP artificial neural network
par: A Rohani, et autres
Publié: (2015) -
Predictive analysis of the value of information flow on the shop floor of developing countries using artificial neural network based deep learning
par: André Marie Mbakop, et autres
Publié: (2021) -
Effect of PEEP and tidal volume on ventilation distribution and end-expiratory lung volume: a prospective experimental animal and pilot clinical study.
par: Günther Zick, et autres
Publié: (2013)