Experimental and Numerical Investigation of Float Glass–GFRP Hybrid Beams

Despite the great potentials of glass as a construction material, its brittle material behaviour poses major challenges to structural engineers when designing load-bearing glass structural members. This paper presents the load response and the failure behaviour of float glass–GFRP hybrid beams, when...

Descripción completa

Guardado en:
Detalles Bibliográficos
Autores principales: M. Achintha, B. Balan
Formato: article
Lenguaje:EN
Publicado: Challenging Glass Conference 2016
Materias:
Acceso en línea:https://doaj.org/article/62435e42b85c4e889548d553e0547c83
Etiquetas: Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
Descripción
Sumario:Despite the great potentials of glass as a construction material, its brittle material behaviour poses major challenges to structural engineers when designing load-bearing glass structural members. This paper presents the load response and the failure behaviour of float glass–GFRP hybrid beams, when used as a mean of improving strength and ductility of float glass. Hybrid beams made from two layers of float glass sheets and an adhesively-bonded semi-transparent pre-cured GFRP interlayer were tested in four-point bending. The experimental results showed that double layer hybrid beams continued to take load even after the formation of the first major crack, and the beams were stronger and ductile than conventional single and multilayer float glass beams. Once the bottom glass layer has cracked the combination of the GFRP and the top glass layer carried the applied load whilst the gradual decrease in the stiffness due to the formation of new cracks ensures a ductile failure. Experimentally-validated finite element (FE) models that predict the evolution of stresses, stiffness and failure load of single and double layer glass beams, and glass– GFRP hybrid beams are also presented.