Proteomic maps of breast cancer subtypes

Breast cancers have been extensively studied at the genomic and transcriptomic levels in the hope of tailoring therapeutic regimens. Here the authors generate deep coverage proteomes from several clinical breast cancer samples, and use machine learning techniques to uncover biological processes alte...

Descripción completa

Guardado en:
Detalles Bibliográficos
Autores principales: Stefka Tyanova, Reidar Albrechtsen, Pauliina Kronqvist, Juergen Cox, Matthias Mann, Tamar Geiger
Formato: article
Lenguaje:EN
Publicado: Nature Portfolio 2016
Materias:
Q
Acceso en línea:https://doaj.org/article/624efee6adce4116946c6179f2b085b2
Etiquetas: Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
id oai:doaj.org-article:624efee6adce4116946c6179f2b085b2
record_format dspace
spelling oai:doaj.org-article:624efee6adce4116946c6179f2b085b22021-12-02T15:33:48ZProteomic maps of breast cancer subtypes10.1038/ncomms102592041-1723https://doaj.org/article/624efee6adce4116946c6179f2b085b22016-01-01T00:00:00Zhttps://doi.org/10.1038/ncomms10259https://doaj.org/toc/2041-1723Breast cancers have been extensively studied at the genomic and transcriptomic levels in the hope of tailoring therapeutic regimens. Here the authors generate deep coverage proteomes from several clinical breast cancer samples, and use machine learning techniques to uncover biological processes altered in specific cancer subtypes.Stefka TyanovaReidar AlbrechtsenPauliina KronqvistJuergen CoxMatthias MannTamar GeigerNature PortfolioarticleScienceQENNature Communications, Vol 7, Iss 1, Pp 1-11 (2016)
institution DOAJ
collection DOAJ
language EN
topic Science
Q
spellingShingle Science
Q
Stefka Tyanova
Reidar Albrechtsen
Pauliina Kronqvist
Juergen Cox
Matthias Mann
Tamar Geiger
Proteomic maps of breast cancer subtypes
description Breast cancers have been extensively studied at the genomic and transcriptomic levels in the hope of tailoring therapeutic regimens. Here the authors generate deep coverage proteomes from several clinical breast cancer samples, and use machine learning techniques to uncover biological processes altered in specific cancer subtypes.
format article
author Stefka Tyanova
Reidar Albrechtsen
Pauliina Kronqvist
Juergen Cox
Matthias Mann
Tamar Geiger
author_facet Stefka Tyanova
Reidar Albrechtsen
Pauliina Kronqvist
Juergen Cox
Matthias Mann
Tamar Geiger
author_sort Stefka Tyanova
title Proteomic maps of breast cancer subtypes
title_short Proteomic maps of breast cancer subtypes
title_full Proteomic maps of breast cancer subtypes
title_fullStr Proteomic maps of breast cancer subtypes
title_full_unstemmed Proteomic maps of breast cancer subtypes
title_sort proteomic maps of breast cancer subtypes
publisher Nature Portfolio
publishDate 2016
url https://doaj.org/article/624efee6adce4116946c6179f2b085b2
work_keys_str_mv AT stefkatyanova proteomicmapsofbreastcancersubtypes
AT reidaralbrechtsen proteomicmapsofbreastcancersubtypes
AT pauliinakronqvist proteomicmapsofbreastcancersubtypes
AT juergencox proteomicmapsofbreastcancersubtypes
AT matthiasmann proteomicmapsofbreastcancersubtypes
AT tamargeiger proteomicmapsofbreastcancersubtypes
_version_ 1718387026940657664