Estimating apple tree canopy chlorophyll content based on Sentinel-2A remote sensing imaging
Abstract The remote sensing technology provides a new means for the determination of chlorophyll content in apple trees that includes a rapid analysis, low cost and large monitoring area. The Back-Propagation Neural Network (BPNN) and the Supported Vector Machine Regression (SVMR) methods were both...
Guardado en:
Autores principales: | Cheng Li, Xicun Zhu, Yu Wei, Shujing Cao, Xiaoyan Guo, Xinyang Yu, Chunyan Chang |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
Nature Portfolio
2018
|
Materias: | |
Acceso en línea: | https://doaj.org/article/62648359130b42da98889557f67e25d5 |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
Ejemplares similares
-
Remote sensing based forest canopy opening and their spatial representation
por: Tania Fernández Vargas, et al.
Publicado: (2021) -
CHANGED PATTERNS OF REMOTELY SENSED CHLOROPHYLL A IN THE ADRIATIC-INFLUENCE OF METEOROLOGICAL CONDITIONS
por: Morovic,Mira, et al.
Publicado: (2004) -
Using a chlorophyll meter to estimate tea leaf chlorophyll and nitrogen contents
por: Liu,Z.A, et al.
Publicado: (2012) -
Improved red-edge chlorophyll-a detection for Sentinel 2
por: James Bramich, et al.
Publicado: (2021) -
Yield Estimation Method of Apple Tree Based on Improved Lightweight YOLOv5
por: LI Zhijun, et al.
Publicado: (2021)