A self-consistent spin-diffusion model for micromagnetics

Abstract We propose a three-dimensional micromagnetic model that dynamically solves the Landau-Lifshitz-Gilbert equation coupled to the full spin-diffusion equation. In contrast to previous methods, we solve for the magnetization dynamics and the electric potential in a self-consistent fashion. This...

Descripción completa

Guardado en:
Detalles Bibliográficos
Autores principales: Claas Abert, Michele Ruggeri, Florian Bruckner, Christoph Vogler, Aurelien Manchon, Dirk Praetorius, Dieter Suess
Formato: article
Lenguaje:EN
Publicado: Nature Portfolio 2016
Materias:
R
Q
Acceso en línea:https://doaj.org/article/626d054797f94f04b748130ccc8e6552
Etiquetas: Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
id oai:doaj.org-article:626d054797f94f04b748130ccc8e6552
record_format dspace
spelling oai:doaj.org-article:626d054797f94f04b748130ccc8e65522021-12-02T12:32:09ZA self-consistent spin-diffusion model for micromagnetics10.1038/s41598-016-0019-y2045-2322https://doaj.org/article/626d054797f94f04b748130ccc8e65522016-12-01T00:00:00Zhttps://doi.org/10.1038/s41598-016-0019-yhttps://doaj.org/toc/2045-2322Abstract We propose a three-dimensional micromagnetic model that dynamically solves the Landau-Lifshitz-Gilbert equation coupled to the full spin-diffusion equation. In contrast to previous methods, we solve for the magnetization dynamics and the electric potential in a self-consistent fashion. This treatment allows for an accurate description of magnetization dependent resistance changes. Moreover, the presented algorithm describes both spin accumulation due to smooth magnetization transitions and due to material interfaces as in multilayer structures. The model and its finite-element implementation are validated by current driven motion of a magnetic vortex structure. In a second experiment, the resistivity of a magnetic multilayer structure in dependence of the tilting angle of the magnetization in the different layers is investigated. Both examples show good agreement with reference simulations and experiments respectively.Claas AbertMichele RuggeriFlorian BrucknerChristoph VoglerAurelien ManchonDirk PraetoriusDieter SuessNature PortfolioarticleMedicineRScienceQENScientific Reports, Vol 6, Iss 1, Pp 1-7 (2016)
institution DOAJ
collection DOAJ
language EN
topic Medicine
R
Science
Q
spellingShingle Medicine
R
Science
Q
Claas Abert
Michele Ruggeri
Florian Bruckner
Christoph Vogler
Aurelien Manchon
Dirk Praetorius
Dieter Suess
A self-consistent spin-diffusion model for micromagnetics
description Abstract We propose a three-dimensional micromagnetic model that dynamically solves the Landau-Lifshitz-Gilbert equation coupled to the full spin-diffusion equation. In contrast to previous methods, we solve for the magnetization dynamics and the electric potential in a self-consistent fashion. This treatment allows for an accurate description of magnetization dependent resistance changes. Moreover, the presented algorithm describes both spin accumulation due to smooth magnetization transitions and due to material interfaces as in multilayer structures. The model and its finite-element implementation are validated by current driven motion of a magnetic vortex structure. In a second experiment, the resistivity of a magnetic multilayer structure in dependence of the tilting angle of the magnetization in the different layers is investigated. Both examples show good agreement with reference simulations and experiments respectively.
format article
author Claas Abert
Michele Ruggeri
Florian Bruckner
Christoph Vogler
Aurelien Manchon
Dirk Praetorius
Dieter Suess
author_facet Claas Abert
Michele Ruggeri
Florian Bruckner
Christoph Vogler
Aurelien Manchon
Dirk Praetorius
Dieter Suess
author_sort Claas Abert
title A self-consistent spin-diffusion model for micromagnetics
title_short A self-consistent spin-diffusion model for micromagnetics
title_full A self-consistent spin-diffusion model for micromagnetics
title_fullStr A self-consistent spin-diffusion model for micromagnetics
title_full_unstemmed A self-consistent spin-diffusion model for micromagnetics
title_sort self-consistent spin-diffusion model for micromagnetics
publisher Nature Portfolio
publishDate 2016
url https://doaj.org/article/626d054797f94f04b748130ccc8e6552
work_keys_str_mv AT claasabert aselfconsistentspindiffusionmodelformicromagnetics
AT micheleruggeri aselfconsistentspindiffusionmodelformicromagnetics
AT florianbruckner aselfconsistentspindiffusionmodelformicromagnetics
AT christophvogler aselfconsistentspindiffusionmodelformicromagnetics
AT aurelienmanchon aselfconsistentspindiffusionmodelformicromagnetics
AT dirkpraetorius aselfconsistentspindiffusionmodelformicromagnetics
AT dietersuess aselfconsistentspindiffusionmodelformicromagnetics
AT claasabert selfconsistentspindiffusionmodelformicromagnetics
AT micheleruggeri selfconsistentspindiffusionmodelformicromagnetics
AT florianbruckner selfconsistentspindiffusionmodelformicromagnetics
AT christophvogler selfconsistentspindiffusionmodelformicromagnetics
AT aurelienmanchon selfconsistentspindiffusionmodelformicromagnetics
AT dirkpraetorius selfconsistentspindiffusionmodelformicromagnetics
AT dietersuess selfconsistentspindiffusionmodelformicromagnetics
_version_ 1718394160148381696