Representation of features as images with neighborhood dependencies for compatibility with convolutional neural networks
Convolutional Neural Networks (CNN) are often unsuitable for predictive modeling involving nonimage based biological features. Here, the authors present a mapping termed REFINED to represent high dimensional vectors as compact images with spatial correlation that makes it compatible with CNN based l...
Guardado en:
Autores principales: | Omid Bazgir, Ruibo Zhang, Saugato Rahman Dhruba, Raziur Rahman, Souparno Ghosh, Ranadip Pal |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
Nature Portfolio
2020
|
Materias: | |
Acceso en línea: | https://doaj.org/article/6277e3dea67843cfa33738444ad4f63f |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
Ejemplares similares
-
Limits to visual representational correspondence between convolutional neural networks and the human brain
por: Yaoda Xu, et al.
Publicado: (2021) -
Joint representation of color and form in convolutional neural networks: A stimulus-rich network perspective.
por: JohnMark Taylor, et al.
Publicado: (2021) -
Cumulative learning enables convolutional neural network representations for small mass spectrometry data classification
por: Khawla Seddiki, et al.
Publicado: (2020) -
Publisher Correction: Limits to visual representational correspondence between convolutional neural networks and the human brain
por: Yaoda Xu, et al.
Publicado: (2021) -
Robust feature space separation for deep convolutional neural network training
por: Ali Sekmen, et al.
Publicado: (2021)