Spatial validation reveals poor predictive performance of large-scale ecological mapping models
Mapping ecological variables using machine-learning algorithms based on remote-sensing data has become a widespread practice in ecology. Here, the authors use forest biomass mapping as a study case to show that the most common model validation approach, which ignores data spatial structure, leads to...
Guardado en:
Autores principales: | , , , , , , , , , , , , |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
Nature Portfolio
2020
|
Materias: | |
Acceso en línea: | https://doaj.org/article/628f13be6ee34becb88ef385ebe283e3 |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
Sumario: | Mapping ecological variables using machine-learning algorithms based on remote-sensing data has become a widespread practice in ecology. Here, the authors use forest biomass mapping as a study case to show that the most common model validation approach, which ignores data spatial structure, leads to overoptimistic assessment of model predictive power. |
---|