Spatial validation reveals poor predictive performance of large-scale ecological mapping models

Mapping ecological variables using machine-learning algorithms based on remote-sensing data has become a widespread practice in ecology. Here, the authors use forest biomass mapping as a study case to show that the most common model validation approach, which ignores data spatial structure, leads to...

Descripción completa

Guardado en:
Detalles Bibliográficos
Autores principales: Pierre Ploton, Frédéric Mortier, Maxime Réjou-Méchain, Nicolas Barbier, Nicolas Picard, Vivien Rossi, Carsten Dormann, Guillaume Cornu, Gaëlle Viennois, Nicolas Bayol, Alexei Lyapustin, Sylvie Gourlet-Fleury, Raphaël Pélissier
Formato: article
Lenguaje:EN
Publicado: Nature Portfolio 2020
Materias:
Q
Acceso en línea:https://doaj.org/article/628f13be6ee34becb88ef385ebe283e3
Etiquetas: Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
Descripción
Sumario:Mapping ecological variables using machine-learning algorithms based on remote-sensing data has become a widespread practice in ecology. Here, the authors use forest biomass mapping as a study case to show that the most common model validation approach, which ignores data spatial structure, leads to overoptimistic assessment of model predictive power.