Spatial validation reveals poor predictive performance of large-scale ecological mapping models
Mapping ecological variables using machine-learning algorithms based on remote-sensing data has become a widespread practice in ecology. Here, the authors use forest biomass mapping as a study case to show that the most common model validation approach, which ignores data spatial structure, leads to...
Guardado en:
Autores principales: | , , , , , , , , , , , , |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
Nature Portfolio
2020
|
Materias: | |
Acceso en línea: | https://doaj.org/article/628f13be6ee34becb88ef385ebe283e3 |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
id |
oai:doaj.org-article:628f13be6ee34becb88ef385ebe283e3 |
---|---|
record_format |
dspace |
spelling |
oai:doaj.org-article:628f13be6ee34becb88ef385ebe283e32021-12-02T17:19:41ZSpatial validation reveals poor predictive performance of large-scale ecological mapping models10.1038/s41467-020-18321-y2041-1723https://doaj.org/article/628f13be6ee34becb88ef385ebe283e32020-09-01T00:00:00Zhttps://doi.org/10.1038/s41467-020-18321-yhttps://doaj.org/toc/2041-1723Mapping ecological variables using machine-learning algorithms based on remote-sensing data has become a widespread practice in ecology. Here, the authors use forest biomass mapping as a study case to show that the most common model validation approach, which ignores data spatial structure, leads to overoptimistic assessment of model predictive power.Pierre PlotonFrédéric MortierMaxime Réjou-MéchainNicolas BarbierNicolas PicardVivien RossiCarsten DormannGuillaume CornuGaëlle ViennoisNicolas BayolAlexei LyapustinSylvie Gourlet-FleuryRaphaël PélissierNature PortfolioarticleScienceQENNature Communications, Vol 11, Iss 1, Pp 1-11 (2020) |
institution |
DOAJ |
collection |
DOAJ |
language |
EN |
topic |
Science Q |
spellingShingle |
Science Q Pierre Ploton Frédéric Mortier Maxime Réjou-Méchain Nicolas Barbier Nicolas Picard Vivien Rossi Carsten Dormann Guillaume Cornu Gaëlle Viennois Nicolas Bayol Alexei Lyapustin Sylvie Gourlet-Fleury Raphaël Pélissier Spatial validation reveals poor predictive performance of large-scale ecological mapping models |
description |
Mapping ecological variables using machine-learning algorithms based on remote-sensing data has become a widespread practice in ecology. Here, the authors use forest biomass mapping as a study case to show that the most common model validation approach, which ignores data spatial structure, leads to overoptimistic assessment of model predictive power. |
format |
article |
author |
Pierre Ploton Frédéric Mortier Maxime Réjou-Méchain Nicolas Barbier Nicolas Picard Vivien Rossi Carsten Dormann Guillaume Cornu Gaëlle Viennois Nicolas Bayol Alexei Lyapustin Sylvie Gourlet-Fleury Raphaël Pélissier |
author_facet |
Pierre Ploton Frédéric Mortier Maxime Réjou-Méchain Nicolas Barbier Nicolas Picard Vivien Rossi Carsten Dormann Guillaume Cornu Gaëlle Viennois Nicolas Bayol Alexei Lyapustin Sylvie Gourlet-Fleury Raphaël Pélissier |
author_sort |
Pierre Ploton |
title |
Spatial validation reveals poor predictive performance of large-scale ecological mapping models |
title_short |
Spatial validation reveals poor predictive performance of large-scale ecological mapping models |
title_full |
Spatial validation reveals poor predictive performance of large-scale ecological mapping models |
title_fullStr |
Spatial validation reveals poor predictive performance of large-scale ecological mapping models |
title_full_unstemmed |
Spatial validation reveals poor predictive performance of large-scale ecological mapping models |
title_sort |
spatial validation reveals poor predictive performance of large-scale ecological mapping models |
publisher |
Nature Portfolio |
publishDate |
2020 |
url |
https://doaj.org/article/628f13be6ee34becb88ef385ebe283e3 |
work_keys_str_mv |
AT pierreploton spatialvalidationrevealspoorpredictiveperformanceoflargescaleecologicalmappingmodels AT fredericmortier spatialvalidationrevealspoorpredictiveperformanceoflargescaleecologicalmappingmodels AT maximerejoumechain spatialvalidationrevealspoorpredictiveperformanceoflargescaleecologicalmappingmodels AT nicolasbarbier spatialvalidationrevealspoorpredictiveperformanceoflargescaleecologicalmappingmodels AT nicolaspicard spatialvalidationrevealspoorpredictiveperformanceoflargescaleecologicalmappingmodels AT vivienrossi spatialvalidationrevealspoorpredictiveperformanceoflargescaleecologicalmappingmodels AT carstendormann spatialvalidationrevealspoorpredictiveperformanceoflargescaleecologicalmappingmodels AT guillaumecornu spatialvalidationrevealspoorpredictiveperformanceoflargescaleecologicalmappingmodels AT gaelleviennois spatialvalidationrevealspoorpredictiveperformanceoflargescaleecologicalmappingmodels AT nicolasbayol spatialvalidationrevealspoorpredictiveperformanceoflargescaleecologicalmappingmodels AT alexeilyapustin spatialvalidationrevealspoorpredictiveperformanceoflargescaleecologicalmappingmodels AT sylviegourletfleury spatialvalidationrevealspoorpredictiveperformanceoflargescaleecologicalmappingmodels AT raphaelpelissier spatialvalidationrevealspoorpredictiveperformanceoflargescaleecologicalmappingmodels |
_version_ |
1718381028510269440 |